
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Are Transformers Good Learners?

Exploring the Limits of Transformer Training

● Current SotA networks can achieve “human-like” performance.
○ language modeling (GPT-3), machine translation (CUBBITT)

2

Neural Networks vs Humans

SYSTEM PROMPT
(HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the
fact that the unicorns spoke perfect English.

MODEL
COMPLETION

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this
odd phenomenon is finally solved.

[...]

Table 12 from “Language Models are Unsupervised Multitask Learners”, Radford et al. (2018)

● Current SotA networks can achieve “human-like” performance.
○ language modeling (GPT-3), machine translation (CUBBITT)

● Inspired by biological neurons, but far from biological learning:
○ very narrowly specialized (vs general knowledge)
○ require huge amount of training examples
○ cannot exploit previous knowledge efficiently

3

Neural Networks vs Humans

1. Generalization in NLP
2. Catastrophic Forgetting
3. Modularity and Knowledge Composition

4

Outline

Generalization in NLP

● We want to measure the ability to “solve” new instances of a problem.
○ in practice, split data into train, development and test datasets
○ the splits should have similar distribution (e.g. similar text domain)

6

Generalization in Machine Learning

● We want to measure the ability to “solve” new instances of a problem.
○ in practice, split data into train, development and test datasets
○ the splits should have similar distribution (e.g. similar text domain)

● We measure generalization to avoid overfitting model to train dataset.
○ we do not want a model that just “memorizes” training data
○ occam’s razor principle

7

Generalization in Machine Learning

● How do we define novel instances of a problem?
○ Ideally, we want to guarantee zero overlap with the training data.
○ Just use examples not present in our training data.
○ What about partial overlap between training and validation instances?

8

Generalization and NLP

● How do we define novel instances of a problem?
○ Ideally, we want to guarantee zero overlap with the training data.
○ Just use examples not present in our training data.
○ What about partial overlap between training and validation instances?

● What if there are multiple solutions to an instance of a problem?
○ one solution in train and the other in test dataset
○ E.g. (Machine Translation): I saw a man with a telescope.

■ => “Viděl jsem muže skrze dalekohled.” (I saw a man through a telescope.)
■ => “Viděl jsem muže s dalekohledem.” (I saw a man “carrying” a telescope.)

9

Generalization and NLP

● Partial overlap can be a problem in NLP:
○ may lead to overestimation of the model performance
○ Train: “A cat sat on a mat.“
○ Test: “A dog sat on a mat.”

10

Generalization and NLP

● Partial overlap can be a problem in NLP:
○ may lead to overestimation of the model performance
○ Train: “A cat sat on a mat.“
○ Test: “A dog sat on a mat.”

● Possible solutions:
○ Multiple random splits (Gorman and Bedrick, 2019)
○ Adversarial splits (Søgaard et al., 2020)

11

Generalization and NLP

● GPT-3: SotA language modeling
○ billions of training tokens, multiple domains

○ also hundreds of billions model weights

12

Generalization and NLP

● GPT-3: SotA language modeling
○ billions of training tokens, multiple domains

○ also hundreds of billions model weights

● we are still learning its capabilities and limits
○ (no) internal memory

■ (AI Dungeon - Text based RPG) [play.aidungeon.io]

■ GPT-3: “You have entered a cave. There is a sleeping dragon protecting a treasure.”

■ Player: “I loot the treasure under the dragon’s corpse.”
■ GPT-3: “You found a sword under the dragon’s corpse.”

13

Generalization and NLP

● GPT-3: SotA language modeling
○ billions of training tokens, multiple domains

○ also hundreds of billions model weights

● we are still learning its capabilities and limits
○ (no) internal memory

■ (AI Dungeon - Text based RPG) [play.aidungeon.io]

■ GPT-3: “You have entered a cave. There is a sleeping dragon protecting a treasure.”

■ Player: “I loot the treasure under the dragon’s corpse.”
■ GPT-3: “You found a sword under the dragon’s corpse.”

○ arithmetics (Brown et al., 2020)

■ two-digit number addition/multiplication

■ it might be just memorizing addition tables

14

Generalization and NLP

● GPT-3: SotA language modeling
○ billions of training tokens, multiple domains

○ also hundreds of billions model weights

● we are still learning its capabilities and limits
○ (no) internal memory

■ (AI Dungeon - Text based RPG) [play.aidungeon.io]

■ GPT-3: “You have entered a cave. There is a sleeping dragon protecting a treasure.”

■ Player: “I loot the treasure under the dragon’s corpse.”
■ GPT-3: “You found a sword under the dragon’s corpse.”

○ arithmetics (Brown et al., 2020)

■ two-digit number addition/multiplication

■ it might be just memorizing addition tables

○ reasoning (Digital Philosopher) [www.alphai.cz/digitalni-filosof/]

■ we might be simply asking questions that are not uncommon in philosophy literature.

■ e.g. : “What is your opinion on killing animals?”

15

Generalization and NLP

● Removing train/test overlap could lead to much clearer model analysis.

16

Toy Tasks And Model Analysis

● Removing train/test overlap could lead to much clearer model analysis.
● String Editing:

○ “Edit op” + separator + sequence of “a” and “b”

○ Edit op: copy, push X, pop, unshift X, shift, reverse, flip

○ only one correct answer for each operation+string combination

○ these task are easy to generalize for humans

17

Toy Tasks And Model Analysis

● Removing train/test overlap could lead to much clearer model analysis.
● String Editing:

○ “Edit op” + separator + sequence of “a” and “b”

○ Edit op: copy, push X, pop, unshift X, shift, reverse, flip

○ only one correct answer for each operation+string combination

○ these task are easy to generalize for humans

● Examples:
○ “push a | a b b a” => “a b b a a”

○ “reverse - | b a b a” => “a b a b”

○ “flip - | a b b b a” => “b a a a b”

18

Toy Tasks And Model Analysis

● Removing train/test overlap could lead to much clearer model analysis.
● String Editing:

○ “Edit op” + separator + sequence of “a” and “b”

○ Edit op: copy, push X, pop, unshift X, shift, reverse, flip

○ only one correct answer for each operation+string combination

○ these task are easy to generalize for humans

● Examples:
○ “push a | a b b a” => “a b b a a”

○ “reverse - | b a b a” => “a b a b”

○ “flip - | a b b b a” => “b a a a b”

● Hypothesis:
○ Transformer can learn to solve new instances of a task regardless of the length of the instance.

19

Toy Tasks And Model Analysis

1. Generate set of unique (a, b) sequences

20

String Editing: Experiment Setup

1. Generate set of unique (a, b) sequences
2. Split to buckets based on input length:

○ 10 (0-10), 15 (11-15), 20 (16-20)

21

String Editing: Experiment Setup

1. Generate set of unique (a, b) sequences
2. Split to buckets based on input length:

○ 10 (0-10), 15 (11-15), 20 (16-20)

3. Split each bucket to Train, Devel and Test sets
○ use only 15-bucket for training (30k examples)

22

String Editing: Experiment Setup

1. Generate set of unique (a, b) sequences
2. Split to buckets based on input length:

○ 10 (0-10), 15 (11-15), 20 (16-20)

3. Split each bucket to Train, Devel and Test sets
○ use only 15-bucket for training (30k examples)

4. Add a task label given the examined task
○ Separate evaluation for each task...

○ … vs joint training on all tasks (using 15-bucket Train only)

23

String Editing: Experiment Setup

● Network:
○ encoder-decoder Transformer (Fairseq “transformer” setting)

○ depth 1

○ 1 attention head

○ embedding size 128

○ 100 training epochs

● Evaluation metric == Accuracy (exact string match)

24

String Editing: Experiment Setup

● Network:
○ encoder-decoder Transformer (Fairseq “transformer” setting)

○ depth 1

○ 1 attention head

○ embedding size 128

○ 100 training epochs

● Evaluation metric == Accuracy (exact string match)

25

String Editing: Experiment Setup

ACC (%) copy push pop shift unshift reverse all

10-bucket 59,1 72,5 0,0 62,4 55,9 0,9 38,4

15-bucket 100,0 100,0 100,0 100,0 100,0 62,6 96,0

20-bucket 0,0 0,0 0,0 0,0 0,0 0,0 2,0

● Similar setup to String Edit:
○ 6 layer Transformer, 8 attention heads, 512 embedding size

● Training - CzEng 2.0 (en => cs):
○ Moses tokenization, 30k BPE

○ Split to buckets based on TGT (cs) length (10-bucket, …, 100-bucket)

● Validation:
○ WMT newstest13-16 (no buckets) + early stopping (BLEU)

● Test:
○ WMT newstest17-20 (bucketed)

26

Length Generalization: Machine Translation

27

Length Generalization: Machine Translation

28

Length Generalization: Machine Translation

● Overfitting to training length is a problem…
○ … but can we take advantage of it?

29

Length Overfitting

● Overfitting to training length is a problem…
○ … but can we take advantage of it?

● Data augmentation by concatenation
○ We take 10-bucket (or 20-bucket, 30-bucket) and concatenate training examples to create

datasets of tgt length 51-60

○ Simple sliding window method

○ Comparison to genuine 60-bucket

30

Length Overfitting

31

Length Overfitting: Data Augmentation

Catastrophic Forgetting

● A good AI system should be able to update its knowledge continuously
○ humans also start with “knowledge priors” when learning new tasks

○ NLP: learning new languages, adaptation to new domains

○ Incremental Learning

● Deep networks suffer from Catastrophic forgetting
○ (McCloskey and Cohen, 1989)

○ Optimal weights of the original task are disregarded when learning new tasks

33

Catastrophic Forgetting

● Train the Transformer in a sequential manner
○ Copy => Push => Pop => Shift => Unshift => Reverse

○ 15-bucket

○ each task - 100 epochs

○ compare to joint training

○ single encoder-decoder layer, 8 attention heads

34

Forgetting and String Edit Task

● Previous tasks completely “forgotten” when trained without any constraints

35

Forgetting: String Editing

train \ test copy push pop shift unshift reverse
copy 100 0 0 0 0 0,8
push 0 100 0 0 0 0
pop 0 0 100 0,1 0 0
shift 0 0 0,1 100 0 0
unshift 0 0 0 0 100 0
reverse 0,8 0 0 0 0 84,4
all 100 100 100 100 100 97,5

● Avoid significant updates to task-important weights
● Regularization-based methods

○ restrict updates to weights that are crucial for the previous tasks

○ Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)

○ Synaptic Intelligence (Zenke et al., 2017)

36

Avoiding Catastrophic Forgetting

● Avoid significant updates to task-important weights
● Regularization-based methods

○ restrict updates to weights that are crucial for the previous tasks

○ Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)

○ Synaptic Intelligence (Zenke et al., 2017)

● Adapter-based methods
○ freeze the original weights + add a trainable subnetwork

○ BERT (Devlin et al., 2017), MT adaptation via adapters (Bapna and Firat, 2019)

37

Avoiding Catastrophic Forgetting

● Avoid significant updates to task-important weights
● Regularization-based methods

○ restrict updates to weights that are crucial for the previous tasks

○ Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)

○ Synaptic Intelligence (Zenke et al., 2017)

● Adapter-based methods
○ freeze the original weights + add a trainable subnetwork

○ BERT (Devlin et al., 2017), MT adaptation via adapters (Bapna and Firat, 2019)

● Replay-based methods
○ periodically expose model to samples from previously learned tasks

○ generative replay (van de Ven et al., 2020)

38

Avoiding Catastrophic Forgetting

● Unsupervised Pre-training Using Elastic Weight Consolidation (Kirkpatrick et
al., 2017)

● Experiments on permuted MNIST
○ new task = single input pixel permutation applied to the whole MNIST dataset

○ comparison to no regularization and L2 regularization

39

Elastic Weight Consolidation (EWC)

40

EWC: Motivation

Joint learning:

Datasets for task A and B:

41

EWC: Motivation

Joint learning:

Datasets for task A and B:

Learning task B after task A:

How do we compute ?

42

EWC: Motivation

Joint learning:

Datasets for task A and B:

Learning task B after task A:

● Computing is intractable.
● We estimate it as a multivariate Gaussian:

○ based on the work on Laplace approximation (MacKay, 1992)

○ Mean: parameter values at the end of task A

○ Variance (diagonal only): diagonal of Fisher Information matrix

43

EWC: Regularization Derivation

● Computing is intractable.
● We estimate it as a multivariate Gaussian:

○ based on the work on Laplace approximation (MacKay, 1992)

○ Mean: parameter values at the end of task A

○ Variance (diagonal only): diagonal of Fisher Information matrix

● Fisher Information matrix:
○ equivalent to 2nd derivation near local extrema

○ can be computed from first derivations

○ Positive-semidefinite

○ in practice, we use Empirical Fisher Information (approx. of FI)

44

EWC: Regularization Derivation

● Can we use EWC regularization to pretrain parts of networks?
● Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight

Consolidation (Variš and Bojar, 2019):
○ low-resource MT (small amount of bilingual data, larger monolingual corpora)

○ avoid overfitting to bi-data by “remembering” language modeling on source-side and target-side

45

EWC: Unsupervised Pretraining

● Can we use EWC regularization to pretrain parts of networks?
● Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight

Consolidation (Variš and Bojar, 2019):
○ low-resource MT (small amount of bilingual data, larger monolingual corpora)

○ avoid overfitting to bi-data by “remembering” language modeling on source-side and target-side

● Data
○ Basque-to-English (Eu-En) Translation

○ Bilingual: IWSLT18 TED Talks (9,1k sent-pairs) + General domain data (940k sent-pairs)

○ Monolingual: Basque Wikipedia (3M sentences), WMT News Commentary (3M sentences)

● Model:
○ Transformer (NeuralMonkey)

○ 6 layers, 512 embeddings size, 16 attention heads

46

Unsupervised Pretraining: Setup

● Transformer decoder LM (empty encoder output) for both Eu and En
○ left-to-right decoding

○ encoder-decoder attention removed

○ minimizing cross-entropy (train and dev) + early-stopping

● FI estimation:
○ on IWSLT development dataset (respective parts)

○ process development data in batches and compute mean gradient

47

Pretraining

● 3 contrastive systems:
○ baseline transformer (no pretraining)

○ train + backtranslated monolingual data

○ LM objective regularization (Ramachandran et al., 2017)

● LM regularization:
○ MT loss combined with pretraining loss

○ same pretraining as ours

48

Experiments:

● Backtranslation wins
● Pretraining and regularizing decoder-only seems promising

49

Results

BLEU (x100) SRC TGT ALL

Baseline 15.68 -- -- --

Backtranslation 19.65 -- -- --

LM reg. -- 13.96 15.56 16.83

EWC reg. -- 10.77 15.91 14.10

LM reg. (ens) -- 15.16 16.60 17.14

EWC reg. (ens) -- 10.73 16.63 14.66

● Possible incompatibility between LM decoder and MT encoder
○ LM: only leftward context

○ MT: left-and-right context

50

Further Analysis: Encoder Pretraining

Modularity and Knowledge Composition

● Creating complex concepts from a simple ones
○ Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)

52

Knowledge Composition

● Creating complex concepts from a simple ones
○ Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)

● Current networks - Using whole network
○ “A taste” of composition - multi-head attention, mixture-of-experts

○ Still requires execution of the whole network

53

Knowledge Composition

● Creating complex concepts from a simple ones
○ Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)

● Current networks - Using whole network
○ “A taste” of composition - multi-head attention, mixture-of-experts

○ Still requires execution of the whole network

● Adapter-based can also be considered a knowledge composition
○ However, the user has to switch the adapters based on the task at hand

○ Ideally, the network itself would choose which subnetworks need to be executed

54

Knowledge Composition

● Instead of using labels (copy, reverse, etc.) we encode them in binary flags
○ Two tasks (flip and reverse)

○ “0” = off, “1” = on

● Basic configurations:
○ Flip (“a” to “b”, “b” to “a”) = “1 0” (training, test)

○ Reverse = “0 1” (training, test)

● “Derived” configurations:
○ Copy = “0 0” (training, test)

○ Flip+Reverse = “1 1” (test only)

● Examples:
○ “0 1 | b a b a” => “a b a b”

○ “1 0 | a b b b a” => “b a a a b”

55

Composition: String Editing

56

Composition: String Editing

Copy, Flip

Reverse

Flip+Reverse (test only)

● The whole network has to be executed regardless of the task
○ task distinction (probably) only via hidden representations

○ insufficient for composition of multiple tasks

57

Network Modularization

● The whole network has to be executed regardless of the task
○ task distinction (probably) only via hidden representations

○ insufficient for composition of multiple tasks

● Conditional Execution of Subnetworks
○ based on Modular networks (Kirsch et al., 2018)

○ our case: modularization of multi-head attention

58

Network Modularization

● After training some attention heads can be pruned:
○ reducing model size without any significant drop

○ the pruning is done with respect to the whole task

○ (Michel et al., 2019, Voita et al. 2019)

59

Attention Modularization

● After training some attention heads can be pruned:
○ reducing model size without any significant drop

○ the pruning is done with respect to the whole task

○ (Michel et al., 2019, Voita et al. 2019)

● Pruned heads ~ wasted model capacity
○ Can we “reuse” these heads when learning multiple tasks?

○ Can we get a more interpretable attention?

60

Attention Modularization

61

Multi-head Attention
Basic formula:

62

Multi-head Attention

i-th attention head:

Basic formula:

63

Multi-head Attention

i-th attention head:

Basic formula:

Masked Multi-head Attention:

(Mask variable can have 1 or 0 values.

● Mask variable can be either fixed or predicted by the network
○ “Controller” predicts the mask values based on the input

○ Our approach:

■ mask prediction based on the input sequence (embedded words)

■ same mask applied at every attention layer (encoder and decoder)

64

Modular Multi-head Attention

65

Modular Multi-head Attention

(Controller)

● Sum over all possible module combinations is intractable:
○ use Expectation-Maximization (Neal and Hinton, 1998)

○ Expectation step:

■ sample module combinations

■ compute loss for each sample

■ pick the sample with lowest loss

66

Modular Multi-head Attention: Training

● Sum over all possible module combinations is intractable:
○ use Expectation-Maximization (Neal and Hinton, 1998)

○ Expectation step:

■ sample module combinations

■ compute loss for each sample

■ pick the sample with lowest loss

○ Maximisation step:

■ use the best sample (so far) from expectation step for model update

67

Modular Multi-head Attention: Training

● Sum over all possible module combinations is intractable:
○ use Expectation-Maximization (Neal and Hinton, 1998)

○ Expectation step:

■ sample module combinations

■ compute loss for each sample

■ pick the sample with lowest loss

○ Maximisation step:

■ use the best sample (so far) from expectation step for model update

○ We do not perform Expectation step in every batch

■ we keep track of best sample for each example so far

68

Modular Multi-head Attention: Training

● IWSLT English-to-German translation:
○ Train: IWSLT14 train data

○ Devel: IWSLT17/tst2014 (SacreBLEU)

○ Test: IWSLT17/tst2015 (SacreBLEU)

● Transformer (Fairseq)
○ embedding size 512

○ 8 attention heads

○ 4k warmup steps (no modularization during warmup)

○ early-stopping (BLEU on Devel data)

69

MMHA: Experiments

70

Results

71

Results: Oracle Experiments

● Is the head-choice during training balanced?
○ some heads are picked more often during training => get updated more frequently

○ frequently updated heads can be more compatible with the previous/following layers

○ this could lead to further preference of these heads during M-step

72

MMHA: Module Collapse

73

MMHA: Module Collapse

● We need to be careful about overfitting...
○ … and how to detect it during evaluation

○ sequence length distribution in training data matters

● Improving learning in Transformer is still far from solved
○ there are promising techniques available (EWC, modularization),

○ their application is not straightforward

● Knowledge composition is still problematic
○ straighforward modularization or designing special architectures?

○ some task may not even be possible to decompose to simple problems

74

Learning in Transformer: Final Remarks

