Are Transformers Good Learners?

Exploring the Limits of Transformer Training

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Neural Networks vs Humans

- Current SotA networks can achieve "human-like" performance.
 - language modeling (GPT-3), machine translation (CUBBITT)

SYSTEM PROMPT (HUMAN-WRITTEN)	In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.					
MODEL COMPLETION	The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.					
	Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.					
	[]					

Table 12 from "Language Models are Unsupervised Multitask Learners", Radford et al. (2018)

Neural Networks vs Humans

- Current SotA networks can achieve "human-like" performance.
 - language modeling (GPT-3), machine translation (CUBBITT)
- Inspired by biological neurons, but far from biological learning:
 - very narrowly specialized (vs general knowledge)
 - require huge amount of training examples
 - cannot exploit previous knowledge efficiently

Outline

- 1. Generalization in NLP
- 2. Catastrophic Forgetting
- 3. Modularity and Knowledge Composition

Generalization in Machine Learning

- We want to measure the ability to "solve" new instances of a problem.
 - in practice, split data into train, development and test datasets
 - the splits should have **similar distribution** (e.g. similar text domain)

Generalization in Machine Learning

- We want to measure the ability to "solve" new instances of a problem.
 - in practice, split data into train, development and test datasets
 - the splits should have **similar distribution** (e.g. similar text domain)
- We measure generalization to avoid overfitting model to train dataset.
 - we do not want a model that just "memorizes" training data
 - occam's razor principle

- How do we define **novel instances** of a problem?
 - Ideally, we want to guarantee zero overlap with the training data.
 - Just use examples not present in our training data.
 - What about partial overlap between training and validation instances?

- How do we define **novel instances** of a problem?
 - Ideally, we want to guarantee zero overlap with the training data.
 - Just use examples not present in our training data.
 - What about partial overlap between training and validation instances?
- What if there are multiple solutions to an instance of a problem?
 - one solution in train and the other in test dataset
 - E.g. (Machine Translation): I saw a man with a telescope.
 - => "Viděl jsem muže skrze dalekohled." (I saw a man through a telescope.)
 - => "Viděl jsem muže s dalekohledem." (I saw a man "carrying" a telescope.)

- Partial overlap can be a problem in NLP:
 - may lead to overestimation of the model performance
 - Train: "A cat sat on a mat."
 - Test: "A dog sat on a mat."

- Partial overlap can be a problem in NLP:
 - may lead to overestimation of the model performance
 - Train: "A cat sat on a mat."
 - Test: "A dog sat on a mat."
- Possible solutions:
 - Multiple random splits (Gorman and Bedrick, 2019)
 - Adversarial splits (Søgaard et al., 2020)

- GPT-3: SotA language modeling
 - billions of training tokens, multiple domains
 - also hundreds of billions model weights

- GPT-3: SotA language modeling
 - billions of training tokens, multiple domains
 - also hundreds of billions model weights
- we are still learning its capabilities and limits
 - (no) internal memory
 - (AI Dungeon Text based RPG) [play.aidungeon.io]
 - GPT-3: "You have entered a cave. There is a **sleeping dragon** protecting a treasure."
 - Player: "I loot the treasure under the **dragon's corpse."**
 - GPT-3: "You found a sword under the **dragon's corpse**."

- GPT-3: SotA language modeling
 - billions of training tokens, multiple domains
 - also hundreds of billions model weights
- we are still learning its capabilities and limits
 - (no) internal memory
 - (AI Dungeon Text based RPG) [play.aidungeon.io]
 - GPT-3: "You have entered a cave. There is a **sleeping dragon** protecting a treasure."
 - Player: "I loot the treasure under the **dragon's corpse.**"
 - GPT-3: "You found a sword under the dragon's corpse."
 - arithmetics (Brown et al., 2020)
 - two-digit number addition/multiplication
 - it might be just memorizing addition tables

- GPT-3: SotA language modeling
 - billions of training tokens, multiple domains
 - also hundreds of billions model weights
- we are still learning its capabilities and limits
 - (no) internal memory
 - (AI Dungeon Text based RPG) [play.aidungeon.io]
 - GPT-3: "You have entered a cave. There is a **sleeping dragon** protecting a treasure."
 - Player: "I loot the treasure under the **dragon's corpse.**"
 - GPT-3: "You found a sword under the **dragon's corpse**."
 - arithmetics (Brown et al., 2020)
 - two-digit number addition/multiplication
 - it might be just memorizing addition tables
 - reasoning (Digital Philosopher) [www.alphai.cz/digitalni-filosof/]
 - we might be simply asking questions that are not uncommon in philosophy literature.
 - e.g.: "What is your opinion on killing animals?"

• Removing train/test overlap could lead to much clearer model analysis.

- Removing train/test overlap could lead to much clearer model analysis.
- String Editing:
 - "Edit op" + separator + sequence of "a" and "b"
 - Edit op: copy, push X, pop, unshift X, shift, reverse, flip
 - only one correct answer for each *operation+string* combination
 - these task are easy to generalize for humans

- Removing train/test overlap could lead to much clearer model analysis.
- String Editing:
 - "Edit op" + separator + sequence of "a" and "b"
 - Edit op: copy, push X, pop, unshift X, shift, reverse, flip
 - only one correct answer for each *operation+string* combination
 - these task are easy to generalize for humans
- Examples:
 - "push a | a b b a" => "a b b a a"
 - "reverse | b a b a" => "a b a b"
 - "flip | a b b b a" => "b a a a b"

- Removing train/test overlap could lead to much clearer model analysis.
- String Editing:
 - "Edit op" + separator + sequence of "a" and "b"
 - Edit op: copy, push X, pop, unshift X, shift, reverse, flip
 - only one correct answer for each *operation+string* combination
 - these task are easy to generalize for humans
- Examples:
 - "push a | a b b a" => "a b b a a"
 - "reverse | b a b a" => "a b a b"
 - "flip | a b b b a" => "b a a a b"
- Hypothesis:
 - Transformer can learn to solve new instances of a task regardless of the length of the instance.

1. Generate set of unique (a, b) sequences

- 1. Generate set of unique (a, b) sequences
- 2. Split to buckets based on input length:
 - **10** (0-10), **15** (11-15), **20** (16-20)

- 1. Generate set of unique (a, b) sequences
- 2. Split to buckets based on input length:
 - **10** (0-10), **15** (11-15), **20** (16-20)
- 3. Split each bucket to Train, Devel and Test sets
 - use only **15-bucket for training (30k examples)**

- 1. Generate set of unique (a, b) sequences
- 2. Split to buckets based on input length:
 - **10** (0-10), **15** (11-15), **20** (16-20)
- 3. Split each bucket to Train, Devel and Test sets
 - use only **15-bucket for training (30k examples)**
- 4. Add a task label given the examined task
 - Separate evaluation for each task...
 - \circ ... vs joint training on all tasks (using 15-bucket Train only)

- Network:
 - encoder-decoder Transformer (Fairseq "transformer" setting)
 - \circ depth 1
 - 1 attention head
 - embedding size 128
 - 100 training epochs
- Evaluation metric == Accuracy (exact string match)

- Network:
 - encoder-decoder Transformer (Fairseq "transformer" setting)
 - \circ depth 1
 - 1 attention head
 - embedding size 128
 - 100 training epochs
- Evaluation metric == Accuracy (exact string match)

ACC (%)	сору	push	рор	shift	unshift	reverse	all
10-bucket	59,1	72,5	0,0	62,4	55,9	0,9	38,4
15-bucket	100,0	100,0	100,0	100,0	100,0	62,6	96,0
20-bucket	0,0	0,0	0,0	0,0	0,0	0,0	2,0

Length Generalization: Machine Translation

- Similar setup to String Edit:
 - 6 layer Transformer, 8 attention heads, 512 embedding size
- Training CzEng 2.0 (en => cs):
 - Moses tokenization, 30k BPE
 - Split to buckets based on TGT (cs) length (10-bucket, ..., 100-bucket)
- Validation:
 - WMT newstest13-16 (no buckets) + early stopping (BLEU)
- Test:
 - WMT newstest17-20 (bucketed)

Length Generalization: Machine Translation

BLEU

Length Bucket

Length Generalization: Machine Translation

Length Overfitting

- Overfitting to training length is a problem...
 - \circ ... but can we take advantage of it?

Length Overfitting

- Overfitting to training length is a problem...
 - ... but can we take advantage of it?
- Data augmentation by concatenation
 - We take 10-bucket (or 20-bucket, 30-bucket) and concatenate training examples to create datasets of tgt length 51-60
 - Simple sliding window method
 - Comparison to genuine 60-bucket

Length Overfitting: Data Augmentation

Catastrophic Forgetting

Catastrophic Forgetting

- A good AI system should be able to update its knowledge continuously
 - humans also start with "knowledge priors" when learning new tasks
 - NLP: learning new languages, adaptation to new domains
 - Incremental Learning
- Deep networks suffer from Catastrophic forgetting
 - (McCloskey and Cohen, 1989)
 - Optimal weights of the original task are disregarded when learning new tasks

Forgetting and String Edit Task

- Train the Transformer in a sequential manner
 - Copy => Push => Pop => Shift => Unshift => Reverse
 - 15-bucket
 - each task 100 epochs
 - compare to joint training
 - single encoder-decoder layer, 8 attention heads

Forgetting: String Editing

• Previous tasks completely "forgotten" when trained without any constraints

train \ test	сору	push	рор	shift	unshift	reverse
сору	100	0	0	0	0	0,8
push	0	100	0	0	0	0
рор	0	0	100	0,1	0	0
shift	0	0	0,1	100	0	0
unshift	0	0	0	0	100	0
reverse	0,8	0	0	0	0	84,4
all	100	100	100	100	100	97,5

Avoiding Catastrophic Forgetting

- Avoid significant updates to task-important weights
- Regularization-based methods
 - restrict updates to weights that are crucial for the previous tasks
 - Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)
 - Synaptic Intelligence (Zenke et al., 2017)
Avoiding Catastrophic Forgetting

- Avoid significant updates to task-important weights
- Regularization-based methods
 - restrict updates to weights that are crucial for the previous tasks
 - Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)
 - Synaptic Intelligence (Zenke et al., 2017)
- Adapter-based methods
 - freeze the original weights + add a trainable subnetwork
 - BERT (Devlin et al., 2017), MT adaptation via adapters (Bapna and Firat, 2019)

Avoiding Catastrophic Forgetting

- Avoid significant updates to task-important weights
- Regularization-based methods
 - restrict updates to weights that are crucial for the previous tasks
 - Elastic Weight Consolidation (EWC, Kirkpatrick et al., 2017)
 - Synaptic Intelligence (Zenke et al., 2017)
- Adapter-based methods
 - freeze the original weights + add a trainable subnetwork
 - BERT (Devlin et al., 2017), MT adaptation via adapters (Bapna and Firat, 2019)
- Replay-based methods
 - periodically expose model to samples from previously learned tasks
 - generative replay (van de Ven et al., 2020)

Elastic Weight Consolidation (EWC)

- Unsupervised Pre-training Using Elastic Weight Consolidation (Kirkpatrick et al., 2017)
- Experiments on permuted MNIST
 - new task = single input pixel permutation applied to the whole MNIST dataset
 - comparison to no regularization and L2 regularization

EWC: Motivation

Datasets for task A and B:

$$\mathcal{D}=\mathcal{D}_\mathcal{A}\cup\mathcal{D}_\mathcal{B}$$

Joint learning:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

EWC: Motivation

Datasets for task A and B:

$$\mathcal{D}=\mathcal{D}_\mathcal{A}\cup\mathcal{D}_\mathcal{B}$$

Joint learning:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

Learning task B after task A:

$$p(\theta | \mathcal{D}_{\mathcal{B}}) = \frac{p(\mathcal{D}_{\mathcal{B}} | \theta) p(\theta | \mathcal{D}_{\mathcal{A}})}{p(\mathcal{D}_{\mathcal{B}})}$$

EWC: Motivation

Datasets for task A and B:

$$\mathcal{D}=\mathcal{D}_\mathcal{A}\cup\mathcal{D}_\mathcal{B}$$

Joint learning:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

Learning task B after task A:

$$p(\theta|\mathcal{D}_{\mathcal{B}}) = \frac{p(\mathcal{D}_{\mathcal{B}}|\theta)p(\theta|\mathcal{D}_{\mathcal{A}})}{p(\mathcal{D}_{\mathcal{B}})}$$

How do we compute $p(\theta | D_A)$?

EWC: Regularization Derivation

- Computing $p(\theta | D_A)$ is intractable.
- We estimate it as a multivariate Gaussian:
 - based on the work on Laplace approximation (MacKay, 1992)
 - Mean: parameter values at the end of task A
 - Variance (diagonal only): diagonal of Fisher Information matrix

EWC: Regularization Derivation

- Computing $p(\theta | D_A)$ is intractable.
- We estimate it as a multivariate Gaussian:
 - based on the work on Laplace approximation (MacKay, 1992)
 - Mean: parameter values at the end of task A
 - Variance (diagonal only): diagonal of Fisher Information matrix
- Fisher Information matrix:
 - o equivalent to 2nd derivation near local extrema
 - can be computed from first derivations
 - Positive-semidefinite
 - in practice, we use Empirical Fisher Information (approx. of FI)

$$\mathcal{L}(\theta) = \mathcal{L}_{\mathcal{B}}(\theta) + \sum_{i} \frac{\lambda}{2} F_{i}(\theta_{i} - \theta_{\mathcal{A}}, i)$$

EWC: Unsupervised Pretraining

- Can we use EWC regularization to pretrain parts of networks?
- Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation (Variš and Bojar, 2019):
 - low-resource MT (small amount of bilingual data, larger monolingual corpora)
 - avoid overfitting to bi-data by "remembering" language modeling on source-side and target-side

Unsupervised Pretraining: Setup

- Can we use EWC regularization to pretrain parts of networks?
- Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation (Variš and Bojar, 2019):
 - low-resource MT (small amount of bilingual data, larger monolingual corpora)
 - avoid overfitting to bi-data by "remembering" language modeling on source-side and target-side
- Data
 - Basque-to-English (Eu-En) Translation
 - Bilingual: IWSLT18 TED Talks (9,1k sent-pairs) + General domain data (940k sent-pairs)
 - Monolingual: Basque Wikipedia (3M sentences), WMT News Commentary (3M sentences)
- Model:
 - Transformer (NeuralMonkey)
 - 6 layers, 512 embeddings size, 16 attention heads

Pretraining

- Transformer decoder LM (empty encoder output) for both Eu and En
 - $\circ \quad \text{left-to-right decoding} \\$
 - encoder-decoder attention removed
 - minimizing cross-entropy (train and dev) + early-stopping
- Fl estimation:
 - on IWSLT development dataset (respective parts)
 - o process development data in batches and compute mean gradient

Experiments:

• 3 contrastive systems:

- baseline transformer (no pretraining)
- train + backtranslated monolingual data
- LM objective regularization (Ramachandran et al., 2017)
- LM regularization:
 - $\circ \quad {\sf MT} \ {\sf loss} \ {\sf combined} \ {\sf with} \ {\sf pretraining} \ {\sf loss}$
 - same pretraining as ours

Results

- Backtranslation wins
- Pretraining and regularizing decoder-only seems promising

BLEU (x100)		SRC	TGT	ALL
Baseline	15.68			
Backtranslation	19.65			
LM reg.		13.96	15.56	16.83
EWC reg.		10.77	15.91	14.10
LM reg. (ens)		15.16	16.60	17.14
EWC reg. (ens)		10.73	16.63	14.66

Further Analysis: Encoder Pretraining

- Possible incompatibility between LM decoder and MT encoder
 - LM: only leftward context
 - MT: left-and-right context

Modularity and Knowledge Composition

Knowledge Composition

- Creating complex concepts from a simple ones
 - Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)

Knowledge Composition

- Creating complex concepts from a simple ones
 - Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)
- Current networks Using whole network
 - "A taste" of composition multi-head attention, mixture-of-experts
 - Still requires execution of the whole network

Knowledge Composition

- Creating complex concepts from a simple ones
 - Humans can create infinite number of sentences from a fixed set of rules (Chomsky, 1965)
- Current networks Using whole network
 - "A taste" of composition multi-head attention, mixture-of-experts
 - Still requires execution of the whole network
- Adapter-based can also be considered a knowledge composition
 - \circ \quad However, the user has to switch the adapters based on the task at hand
 - Ideally, the network itself would choose which subnetworks need to be executed

Composition: String Editing

- Instead of using labels (copy, reverse, etc.) we encode them in binary flags
 - Two tasks (flip and reverse)
 - "0" = off, "1" = on
- Basic configurations:
 - Flip ("a" to "b", "b" to "a") = "10" (training, test)
 - Reverse = "0 1" (training, test)
- "Derived" configurations:
 - Copy = "0 0" (training, test)
 - Flip+Reverse = "1 1" (test only)
- Examples:
 - \circ "0 1 | b a b a" => "a b a b"
 - "10|abbba"=> "baaab"

Composition: String Editing

Network Modularization

- The whole network has to be executed regardless of the task
 - task distinction (probably) only via hidden representations
 - insufficient for composition of multiple tasks

Network Modularization

- The whole network has to be executed regardless of the task
 - task distinction (probably) only via hidden representations
 - insufficient for composition of multiple tasks
- Conditional Execution of Subnetworks
 - based on Modular networks (Kirsch et al., 2018)
 - \circ ~ our case: modularization of multi-head attention

Attention Modularization

- After training some attention heads can be pruned:
 - reducing model size without any significant drop
 - the pruning is done with respect to the whole task
 - (Michel et al., 2019, Voita et al. 2019)

Attention Modularization

- After training some attention heads can be pruned:
 - reducing model size without any significant drop
 - the pruning is done with respect to the whole task
 - (Michel et al., 2019, Voita et al. 2019)
- Pruned heads ~ wasted model capacity
 - Can we "reuse" these heads when learning multiple tasks?
 - Can we get a more interpretable attention?

Multi-head Attention

Basic formula:

$$MHA(q, x) = \sum_{i=0}^{H-1} Att_i(q, x)$$

Multi-head Attention

Basic formula:

$$MHA(q, x) = \sum_{i=0}^{H-1} Att_i(q, x)$$

i-th attention head:

$$Att_{i}(q, \mathbf{x}) = W_{o}^{i} \sum_{j=0}^{N-1} Softmax(\frac{q^{\mathsf{T}}(W_{q}^{i})^{\mathsf{T}}W_{k}^{i}x_{j}}{\sqrt{d}})W_{v}^{i}x_{j}$$

Multi-head Attention

Basic formula:

$$MHA(q, x) = \sum_{i=0}^{H-1} Att_i(q, x)$$

i-th attention head:

$$Att_{i}(q, \mathbf{x}) = W_{o}^{i} \sum_{j=0}^{N-1} Softmax(\frac{q^{\mathsf{T}}(W_{q}^{i})^{\mathsf{T}}W_{k}^{i}x_{j}}{\sqrt{d}})W_{v}^{i}x_{j}$$

Masked Multi-head Attention:

$$MHA(q, x) = \sum_{i=0}^{H-1} \xi_i Att_i(q, x)$$

(Mask variable ξ_i can have 1 or 0 values.

Modular Multi-head Attention

- Mask variable ξ_i can be either fixed or predicted by the network
 - "Controller" predicts the mask values based on the input
 - Our approach:
 - mask prediction based on the input sequence (embedded words)
 - same mask applied at every attention layer (encoder and decoder)

$$p(y|x, \theta, \phi) = \sum_{a} p(y, a|x, \theta, \phi)$$
$$p(y, a|x, \theta, \phi) = p(y|a, x, \theta)p(a|x, \phi)$$

Modular Multi-head Attention

(Controller)

65

Modular Multi-head Attention: Training

- Sum over all possible module combinations is intractable:
 - use Expectation-Maximization (Neal and Hinton, 1998)
 - Expectation step:
 - sample module combinations
 - compute loss for each sample
 - pick the sample with lowest loss

Modular Multi-head Attention: Training

- Sum over all possible module combinations is intractable:
 - use Expectation-Maximization (Neal and Hinton, 1998)
 - Expectation step:
 - sample module combinations
 - compute loss for each sample
 - pick the sample with lowest loss
 - Maximisation step:
 - use the best sample (so far) from expectation step for model update

Modular Multi-head Attention: Training

- Sum over all possible module combinations is intractable:
 - use Expectation-Maximization (Neal and Hinton, 1998)
 - Expectation step:
 - sample module combinations
 - compute loss for each sample
 - pick the sample with lowest loss
 - Maximisation step:
 - use the best sample (so far) from expectation step for model update
 - We do not perform Expectation step in every batch
 - we keep track of best sample for each example so far

MMHA: Experiments

• IWSLT English-to-German translation:

- Train: IWSLT14 train data
- Devel: IWSLT17/tst2014 (SacreBLEU)
- Test: IWSLT17/tst2015 (SacreBLEU)
- Transformer (Fairseq)
 - $\circ \quad \text{embedding size 512} \\$
 - 8 attention heads
 - 4k warmup steps (no modularization during warmup)
 - early-stopping (BLEU on Devel data)

Results

iwslt17/tst2014	base	E- $freq = 1$		E- $freq = 5$			
		ENC	DEC	ALL	ENC	DEC	ALL
base	21.3	-	_	-	-	-	-
1-head	_	20.6	21.5	20.9	20.4	17.6	19.3
2-head	-	20.9	21.7	20.8	20.8	*21.3	19.5
4-head	-	21.1	21.8	*21.4	21.1	*21.4	20.5
iwslt17/tst2015							
base	22.5	_	—	_	_	-	-
1-head	_	21.6	*22.6	22.0	21.5	18.5	20.1
2-head	_	22.0	*22.7	21.8	21.7	*22.4	20.6
4-head		*22.4	22.8	*22.4	22.2	*22.4	21.7

Table 1: Mean translation quality (sample size 5) measured using BLEU (multiplied by 100 for better readability) of the Transformer baseline (*base*) and systems with with varying sizes of attention head subsets. Two training settings are compared based on the frequency of the expectation step: either in each mini-batch or after every five mini-batches. Numbers in **bold** show an improvement over the baseline system. Numbers in *italics* indicate a system where at least one of the sample training diverged, lowering the mean BLEU. Asterisk (*) indicates results where the difference from the respective baseline is not statistically significant (*p*-value > 0.05).

Results: Oracle Experiments

iwslt17/tst2014	w/ctrl	fixed	oracle
1-head	20.9	*20.9	*20.9
4-head	21.4	17.4	22.1
iwslt17/tst2015			
1-head	22.0	*21.8	*22.0
4-head	22.4	18.3	23.2

Table 2: Mean BLEU comparison (multiplied by 100, with 5 randomly initialized runs each) between the standard ModMHA Transformer (*w/ctrl*; *E-freq* = 1), a version with a single fixed subset (*fixed*) and the oracle setting (*oracle*). Each system was trained using the ALL setting. Scores in **bold** indicate an improvement over the respective w/ctrl baseline. *Italics* indicate settings, where at least one of the runs did not converge. Asterisk (*) indicates results where the difference from the respective w/ctrl baseline is not statistically significant (*p*-value > 0.05).

MMHA: Module Collapse

- Is the head-choice during training balanced?
 - some heads are picked more often during training => get updated more frequently
 - frequently updated heads can be more compatible with the previous/following layers
 - this could lead to further preference of these heads during M-step
MMHA: Module Collapse

Figure 4: A correlation between the number of examples a specific head has seen during training (1head, ALL setting) and the BLEU score of a system using only that head. Systems were evaluated on iwslt17/tst14 dataset.

Learning in Transformer: Final Remarks

- We need to be careful about overfitting...
 - ... and how to detect it during evaluation
 - sequence length distribution in training data matters
- Improving learning in Transformer is still far from solved
 - there are promising techniques available (EWC, modularization),
 - $\circ \quad \ \ their \ \ application \ \ is \ not \ \ straightforward$
- Knowledge composition is still problematic
 - straighforward modularization or designing special architectures?
 - some task may not even be possible to decompose to simple problems