
  

ARG1

ARG0

ARG0

instance

instanceinstance

want-01

boy go-01

w

g

b

The boy wants to go

(w / want-01
     :ARG0 (b / boy)
     :ARG1 (g / go-01
                     :ARG0 b))

Abstract Meaning Representation (AMR)



Abstract Meaning Representation 
(AMR)

Basic “who-is-doing-what-to-whom”

Cover all sentence content in single, rooted structure, DAG

Builds upon PropBank

Uses PB rolesets: e.g. describe.01
● Arg0: describer
● Arg1: thing described
● Arg2: secondary attribute, described-as

Adds more noun phrase structure, coreference and discourse 
structure



Abstract Meaning Representation 
(AMR)

AMR composed of concepts and relations, not 
nouns and verbs
Currently ~100 relations, plus inverses
AMR is not enslaved to syntax, or even mildly 
indentured:

He described her as a genius. (d / describe-01
As he described her, she is a genius.  :ARG0 (h / he)
His description of her: a genius.   :ARG1 (s / she)

         :ARG2 (g / genius))



Aligning parallel corpora
Subtrees of dependency parses of parallel 
English/Chinese corpora only have isomorphic 
matches about 30% of the time.  

● Yuan Ding, Thesis, 2005

Parallel PropBank structures match almost 60%. 
● Wu & Palmer, SSST, 2011

What about AMR’s?  Will they align even more?
● Xue, Bojar, Hajič, Palmer, Urešová, Zhang, LREC 

2014

44



Meaning in AMR’s and Tectogrammatical Representation Interchange 
(MATRIX)

55

●Zdenka Uresova (Charles)
●Ondrej Dusek (Charles)
●Tim O'Gorman (Colorado)
●Ondrej Bojar (Charles)

Jan Hajic
(Charles)

Martha Palmer
(Colorado)

Nianwen Xue
(Brandeis)



MATRIX Questions
Meaning in AMR’s and Tectogrammatical Representation 

Interchange

How distant/similar are AMR’s and the Tectogrammatical 
Representation for English?  Can we port the TR MT system to 

AMR’s? 

How distant/similar are English AMR’s,  Chinese, and Czech AMR’s?

Which differences have the most impact on the graph matching?

How much can deterministic reformatting of AMR’s bridge the 
distances?

66



Preparatory Efforts

English, Chinese, and Czech AMR’s of the same 
100 sentences and their translations.
A preliminary mapping from TR to AMR.
Given a 1M word WSJ English corpus with 
parallel Czech translations, both in TR
And automatically produced AMR’s (from 
OntoNotes, thanks to Ulf Hermjakob) for the 
same data

66



Differences in Lexicalization and Annotation 
Choice

       “   ”   是一个大叫 哦！ 的 刻。这 噢 时
This is a major `` D'oh! '' moment .

77



Annotation Choice Differences
Annotation choice
To reify or not to reify?
Chinese: reifies “be_temporally_located_at”
English drops “be” and puts “this” as the :domain 
of “moment”:
 (m / moment

●      :mod (m2 / major)
●     :domain (t / this)
●     :mod (d / d'oh :mode expressive))

88



Alternatives Annotation Choices 
for English

English could just as easily reify “is moment” as 
temporal_location.01
 (t / temporal_location.01

● :Arg1 (t2 / this)
●  :mod (m / major)
●  :mod (d / d'oh :mode expressive))

English and Chinese would match more closely
How often is this the case?

99



Lexicalization differences
Language specific lexicalization differences

• Simply different word choices
• “major” vs. 叫 / cry

Often a single lexical item in one language is a multi-word expression 
elsewhere, w/ structure

“tells the tale”  vs. popsány..

• (t / tell.01              (p / popsat.1

 :Arg1 (t2 / tale)       (no :Arg1)

“překračovat  povolenou  rychlost” vs. “speeding”

Should AMR make more of an effort to treat MWE’s as single lexical 
items?

1010

“Zácpa kolem čeho“
“Localized congestion around what”



Questions to investigate

If there are alternative annotation choices, can 
we deterministically produce them, resulting in 
better matches?
Where there are language-specific different 
lexicalizations, are there resources that could 
provide bi-lingual mappings?
How much should AMR abstract away from Multi-
word expressions?
When to reify?  And when not?
Etc., 

1111



Graph-Based Parser for the
Abstract Meaning Representation (JAMR)

Jeff Flanigan (CMU)

Flanigan, Thomson, Carbonell, Dyer, Smith (ACL 2014)



JAMR Overview

Input

Relation	
 
Identification
• Connect 

fragments by 
adding relations

Concept	
 
Identification
• Label sentence with 

concept fragments
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JAMR Overview

Input

Relation	
 
Identification
• Connect 

fragments by 
adding relations

• Relations = 
labeled directed 
edges

Concept	
 
Identification
• Label sentence with 

concept fragments



Concept Identification

• Identify possible invoked concept 
fragments

• Spans of words labeled with 
possible concept fragments



Concept Identification

• Find best concept fragments 
labeling using dynamic 
programming



Relation Identification

• Relation identification adds 
edges between nodes

• Edge factored 
discriminatively trained 
model

• Uses maximum spanning, 
connected, sub-graph 
algorithm (MSCG) with 
additional constraints



Maximum Spanning Connected Sub-Graph 
Algorithm (MSCG)



Graph must be deterministic

Maximum Spanning Connected Sub-Graph 
Algorithm (MSCG)



Enforce Constraint Using Lagrangian 
Relaxation



Results

F1
Concept 
Identification

76%

Full System (gold 
concepts)

80% Smatch

Full System 58% Smatch

JAMR available at 
http://github.com/jflanigan/jamr



Chinese AMR parsing

• Chuan Wang (Brandeis)
• Yuchen Zhang (Brandeis)
• Wei-Te (Colorado)

Nianwen Xue (Brandeis)



Chinese AMR parsing

• Data availability:

– Only have AMR annotation for 100 sentences. 
Specifications still under development

– But there is treebank and propbank annotation for over 1.5M 
words

• So during the workshop we will be working on:

– Producing pseudo AMRs based on the Chinese TreeBank and 
PropBank

– Developing annotation specifications for Chinese AMRs
– Developing a dependency tree to graph transition system, initially 

trained on English AMRs 



Parsing State
● each parsing state is a triple c = (σ,β,Α), where

a. σ is a buffer of nodes initialized by bottom-up traversal of current 
sentence’s dependency tree dT, with buffer top i

b. β is a buffer of nodes which are children of current σ top i, with 
buffer top j

c. A is a partially parsed graph initialized with dependency tree dT

● terminal state is ([],[],A)



Parsing Action
➔ if β is not empty:

◆ delete edge: (i|σ,j|β,Α) => (i|σ,β,Α.remove_edge(i,j))

◆ swap: (i|σ,j|β,A) => (i|j|σ,β,A.swap(i,j))

◆ replace head: (i|σ,j|β,A) => (j|σ,β=[i’s children except j],A.replace_head(i,j))

◆ merge: (i|σ,j|β,A) => ((i<j)?i:j|σ,(i<j)?j:i|β,A.merge(i,j))

◆ next: (i|σ,j|β,A) => (i|σ,β,A)  # correct edge

➔ β is empty:

◆ add child k: (i|σ,[],A) => (i|σ,[],A.add_edge(i,k))

◆ finish: (i|σ,[],A) => (t|σ,βt,A) # done with current node



Example

σ:[The-1|σ]
β:[]
Finish



Example

σ:[boy-2|σ]
β:[The-1]
Delete child



Example

σ:[boy-2|σ]
β:[]
Finish



Example

σ:[to-4|σ]
β:[]
Finish



Example

σ:[New-6|σ]
β:[]
Finish



Example

σ:[York-7|σ]
β:[]
Finish



Example

σ:[City-8|σ]
β:[New-6|β]
Merge



Example

σ:[New,City-6|σ]
β:[York-7]
Merge



Example

σ:
[New,York,Cit
y-6|σ]
β:[]
Finish



Example

σ:[visit-5|σ]
β:[to-4|β]
Delete child



Example

σ:[visit-5|σ]
β:
[New,York,Cit
y-6]
Next



Example

σ:[visit-5|σ]
β:[]
Add child boy-
2



Example

σ:[visit-5|σ]
β:[]
Finish



Example

σ:[wants-3|σ]
β:[boy-2|β]
Next



Example

σ:[wants-3|σ]
β:[visit-5]
Next



Example

σ:[wants-3|σ]
β:[]
Finish



Example

σ:[Root-0|σ]
β:[wants-3|β]
Next



Example



Graph Learning for AMR (GLAMR)

● Xiaochang Peng (Rochester)

● Naomi Saphra (JHU)

Dan Gildea 
(Rochester)

Giorgio Satta 
(Padova)

David Chiang 
(USC/ISI)

Frank Drewes 
(Umea)



Graph Learning for AMR (GLAMR)

Syntax-Based MT:           

string → tree → string synchronous context-free grammar

Semantics-Based MT:

string → graph → string ?



Hyperedge Replacement Grammars (HRG)

● Generalize Context-Free Grammars to generate graphs

● Terminal and Nonterminal Hyperedges       (Drewes et al., 1999) 
● Parsing graph with HRG:

● O(((3^d)n)^(k+1))                                         (Chiang et al., ACL 2013)
– n: size of graph
– d: degree of graph
– k: treewidth of grammar

● Our goals this month:

● Restricted formalism for NLP that is polynomial-time parsable
● MCMC grammar learning



Dependency Tree to Graph Transition System
A transition system is a quadruples S = (C, T, Cs,Ct), where 

1. C is a set of parsing states (configurations)

2. T is a set of parsing actions (transitions), each of which 
is a function t: Ci Cj�

3. Cs is an initialization function, mapping a sentence and 
its dependency tree to an initial parsing state

4. Ct is a set of terminal parsing state
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