

ARG1

ARG0

ARG0

instance

instanceinstance

want-01

boy go-01

w

g

b

The boy wants to go

(w / want-01
 :ARG0 (b / boy)
 :ARG1 (g / go-01
 :ARG0 b))

Abstract Meaning Representation (AMR)

Abstract Meaning Representation
(AMR)

Basic “who-is-doing-what-to-whom”

Cover all sentence content in single, rooted structure, DAG

Builds upon PropBank

Uses PB rolesets: e.g. describe.01
● Arg0: describer
● Arg1: thing described
● Arg2: secondary attribute, described-as

Adds more noun phrase structure, coreference and discourse
structure

Abstract Meaning Representation
(AMR)

AMR composed of concepts and relations, not
nouns and verbs
Currently ~100 relations, plus inverses
AMR is not enslaved to syntax, or even mildly
indentured:

He described her as a genius. (d / describe-01
As he described her, she is a genius. :ARG0 (h / he)
His description of her: a genius. :ARG1 (s / she)

 :ARG2 (g / genius))

Aligning parallel corpora
Subtrees of dependency parses of parallel
English/Chinese corpora only have isomorphic
matches about 30% of the time.

● Yuan Ding, Thesis, 2005

Parallel PropBank structures match almost 60%.
● Wu & Palmer, SSST, 2011

What about AMR’s? Will they align even more?
● Xue, Bojar, Hajič, Palmer, Urešová, Zhang, LREC

2014

44

Meaning in AMR’s and Tectogrammatical Representation Interchange
(MATRIX)

55

●Zdenka Uresova (Charles)
●Ondrej Dusek (Charles)
●Tim O'Gorman (Colorado)
●Ondrej Bojar (Charles)

Jan Hajic
(Charles)

Martha Palmer
(Colorado)

Nianwen Xue
(Brandeis)

MATRIX Questions
Meaning in AMR’s and Tectogrammatical Representation

Interchange

How distant/similar are AMR’s and the Tectogrammatical
Representation for English? Can we port the TR MT system to

AMR’s?

How distant/similar are English AMR’s, Chinese, and Czech AMR’s?

Which differences have the most impact on the graph matching?

How much can deterministic reformatting of AMR’s bridge the
distances?

66

Preparatory Efforts

English, Chinese, and Czech AMR’s of the same
100 sentences and their translations.
A preliminary mapping from TR to AMR.
Given a 1M word WSJ English corpus with
parallel Czech translations, both in TR
And automatically produced AMR’s (from
OntoNotes, thanks to Ulf Hermjakob) for the
same data

66

Differences in Lexicalization and Annotation
Choice

 “ ” 是一个大叫 哦！ 的 刻。这 噢 时
This is a major `` D'oh! '' moment .

77

Annotation Choice Differences
Annotation choice
To reify or not to reify?
Chinese: reifies “be_temporally_located_at”
English drops “be” and puts “this” as the :domain
of “moment”:
 (m / moment

● :mod (m2 / major)
● :domain (t / this)
● :mod (d / d'oh :mode expressive))

88

Alternatives Annotation Choices
for English

English could just as easily reify “is moment” as
temporal_location.01
 (t / temporal_location.01

● :Arg1 (t2 / this)
● :mod (m / major)
● :mod (d / d'oh :mode expressive))

English and Chinese would match more closely
How often is this the case?

99

Lexicalization differences
Language specific lexicalization differences

• Simply different word choices
• “major” vs. 叫 / cry

Often a single lexical item in one language is a multi-word expression
elsewhere, w/ structure

“tells the tale” vs. popsány..

• (t / tell.01 (p / popsat.1

 :Arg1 (t2 / tale) (no :Arg1)

“překračovat povolenou rychlost” vs. “speeding”

Should AMR make more of an effort to treat MWE’s as single lexical
items?

1010

“Zácpa kolem čeho“
“Localized congestion around what”

Questions to investigate

If there are alternative annotation choices, can
we deterministically produce them, resulting in
better matches?
Where there are language-specific different
lexicalizations, are there resources that could
provide bi-lingual mappings?
How much should AMR abstract away from Multi-
word expressions?
When to reify? And when not?
Etc.,

1111

Graph-Based Parser for the
Abstract Meaning Representation (JAMR)

Jeff Flanigan (CMU)

Flanigan, Thomson, Carbonell, Dyer, Smith (ACL 2014)

JAMR Overview

Input

Relation	

Identification
• Connect

fragments by
adding relations

Concept	

Identification
• Label sentence with

concept fragments

JAMR Overview

Input

Relation	

Identification
• Connect

fragments by
adding relations

Concept	

Identification
• Label sentence with

concept fragments

JAMR Overview

Input

Relation	

Identification
• Connect

fragments by
adding relations

• Relations =
labeled directed
edges

Concept	

Identification
• Label sentence with

concept fragments

Concept Identification

• Identify possible invoked concept
fragments

• Spans of words labeled with
possible concept fragments

Concept Identification

• Find best concept fragments
labeling using dynamic
programming

Relation Identification

• Relation identification adds
edges between nodes

• Edge factored
discriminatively trained
model

• Uses maximum spanning,
connected, sub-graph
algorithm (MSCG) with
additional constraints

Maximum Spanning Connected Sub-Graph
Algorithm (MSCG)

Graph must be deterministic

Maximum Spanning Connected Sub-Graph
Algorithm (MSCG)

Enforce Constraint Using Lagrangian
Relaxation

Results

F1
Concept
Identification

76%

Full System (gold
concepts)

80% Smatch

Full System 58% Smatch

JAMR available at
http://github.com/jflanigan/jamr

Chinese AMR parsing

• Chuan Wang (Brandeis)
• Yuchen Zhang (Brandeis)
• Wei-Te (Colorado)

Nianwen Xue (Brandeis)

Chinese AMR parsing

• Data availability:

– Only have AMR annotation for 100 sentences.
Specifications still under development

– But there is treebank and propbank annotation for over 1.5M
words

• So during the workshop we will be working on:

– Producing pseudo AMRs based on the Chinese TreeBank and
PropBank

– Developing annotation specifications for Chinese AMRs
– Developing a dependency tree to graph transition system, initially

trained on English AMRs

Parsing State
● each parsing state is a triple c = (σ,β,Α), where

a. σ is a buffer of nodes initialized by bottom-up traversal of current
sentence’s dependency tree dT, with buffer top i

b. β is a buffer of nodes which are children of current σ top i, with
buffer top j

c. A is a partially parsed graph initialized with dependency tree dT

● terminal state is ([],[],A)

Parsing Action
➔ if β is not empty:

◆ delete edge: (i|σ,j|β,Α) => (i|σ,β,Α.remove_edge(i,j))

◆ swap: (i|σ,j|β,A) => (i|j|σ,β,A.swap(i,j))

◆ replace head: (i|σ,j|β,A) => (j|σ,β=[i’s children except j],A.replace_head(i,j))

◆ merge: (i|σ,j|β,A) => ((i<j)?i:j|σ,(i<j)?j:i|β,A.merge(i,j))

◆ next: (i|σ,j|β,A) => (i|σ,β,A) # correct edge

➔ β is empty:

◆ add child k: (i|σ,[],A) => (i|σ,[],A.add_edge(i,k))

◆ finish: (i|σ,[],A) => (t|σ,βt,A) # done with current node

Example

σ:[The-1|σ]
β:[]
Finish

Example

σ:[boy-2|σ]
β:[The-1]
Delete child

Example

σ:[boy-2|σ]
β:[]
Finish

Example

σ:[to-4|σ]
β:[]
Finish

Example

σ:[New-6|σ]
β:[]
Finish

Example

σ:[York-7|σ]
β:[]
Finish

Example

σ:[City-8|σ]
β:[New-6|β]
Merge

Example

σ:[New,City-6|σ]
β:[York-7]
Merge

Example

σ:
[New,York,Cit
y-6|σ]
β:[]
Finish

Example

σ:[visit-5|σ]
β:[to-4|β]
Delete child

Example

σ:[visit-5|σ]
β:
[New,York,Cit
y-6]
Next

Example

σ:[visit-5|σ]
β:[]
Add child boy-
2

Example

σ:[visit-5|σ]
β:[]
Finish

Example

σ:[wants-3|σ]
β:[boy-2|β]
Next

Example

σ:[wants-3|σ]
β:[visit-5]
Next

Example

σ:[wants-3|σ]
β:[]
Finish

Example

σ:[Root-0|σ]
β:[wants-3|β]
Next

Example

Graph Learning for AMR (GLAMR)

● Xiaochang Peng (Rochester)

● Naomi Saphra (JHU)

Dan Gildea
(Rochester)

Giorgio Satta
(Padova)

David Chiang
(USC/ISI)

Frank Drewes
(Umea)

Graph Learning for AMR (GLAMR)

Syntax-Based MT:

string → tree → string synchronous context-free grammar

Semantics-Based MT:

string → graph → string ?

Hyperedge Replacement Grammars (HRG)

● Generalize Context-Free Grammars to generate graphs

● Terminal and Nonterminal Hyperedges (Drewes et al., 1999)
● Parsing graph with HRG:

● O(((3^d)n)^(k+1)) (Chiang et al., ACL 2013)
– n: size of graph
– d: degree of graph
– k: treewidth of grammar

● Our goals this month:

● Restricted formalism for NLP that is polynomial-time parsable
● MCMC grammar learning

Dependency Tree to Graph Transition System
A transition system is a quadruples S = (C, T, Cs,Ct), where

1. C is a set of parsing states (configurations)

2. T is a set of parsing actions (transitions), each of which
is a function t: Ci Cj�

3. Cs is an initialization function, mapping a sentence and
its dependency tree to an initial parsing state

4. Ct is a set of terminal parsing state

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

