Probabilistic Representations of Linguistic Meaning ("PReLiM")

Jason Eisner

Jelinek Memorial Workshop, July 2014

Week 1: A blue-sky workshop

- What should computational semantics look like in 10 years?
- More of what semanticists think about
- Integrated with reasoning and background knowledge ("language of thought")
- Integrated with pragmatics
- Fuller probabilistic treatment (generative)

Reason 1: Integration

Reason 1: Integration

- This is going to be harder than just Bayes nets.
 - What is the probabilistic version of modal logic?
 - How do we deal with richly structured beliefs?
 - How about incomplete, vague, or contradictory ones?
- We may need some new ideas about probabilistic modeling.

Reason 1: Integration

- Natural language is related to the "language of thought."
- Fillmore 1982:

"This sentence did not give you this information directly; you had to 'compute' some of it by constructing, in your imagination, a complex context within which each of the lexically signaled framings was motivated."

("The <u>decedent</u> while on <u>land</u> and in <u>mufti</u> last <u>weekend</u> ate a typical <u>breakfast</u> and read a novel high in <u>flip strength</u>.")

- What happens in a <u>car crash</u>?
- Think of a widow. How old is she?
 - How do you know?
 - Compositional semantics: How about "the widow of the firefighter"?
 - "The widow of the village chieftain"?

- For some decades, computational linguistics has been trying to reinvent linguistics "so it works"
- From grammars to probability distributions (from "what's possible?" to "what's probable?")
- Starting with phonetics and collocations

Thanks, Fred

Reason 2: Stochasticization has paid off for computational linguistics

- Phonetics: Gaussian mixtures, n-grams, ...
- Phonology, morphology: probabilistic FSTs, stochastic OT, graphical models over many strings, ...
- History of words: probabilistic evolutionary models
- Word collocations: n-gram models, topic models, embeddings, ...
- Syntax: PCFGs, selectional preference models, ...
- Translation: synchronous grammars, ...

Model the joint distribution of elements of form and meaning

Algorithms for robust comprehension, production, and learning

- This is because knowledge of language includes knowledge of probabilities.
- It's amazing that we can communicate so effectively at such high bandwidth!
- Seems to require prior probabilities to help reconstruct what is left out.
 - Certainly for syntax ... and also for semantics.

- Models get richer in linguistic insight over time.
 - The goal of science is to find the underlying probability distributions that can explain and predict our observations.

E. T. Jaynes (2003), Probability Theory: The Logic of Science

- Models get richer in linguistic insight over time.
 - The goal of science is to find the underlying probability distributions that can explain and predict our observations.
 - Linguists shouldn't be alarmed. "Do not think that I have come to abolish the Law or the Prophets; I have not come to abolish them but to fulfill them."

- Models get richer in linguistic insight over time.
 - The goal of science is to find the underlying probability distributions that can explain and predict our observations (Jaynes 2003).
 - Linguists shouldn't be alarmed. "Do not think that I have come to abolish the Law or the Prophets; I have not come to abolish them but to fulfill them."
 - □ But we're only human so it takes time. [©]
 - And in fact, it helps to start simple.

- Models get richer in linguistic insight over time.
 - Helps to start simple.
- Case study: PCFGs
 - Formalism just tries to capture the most important things about syntax: phrase types, hierarchical structure
 - □ Flexible: no commitment to particular nonterminals or rules
 - Explanatory adequacy? (sufficiently strong inductive bias?)
 - Missing a lot of things that probably belong in UG
 - But you can get more specific theories via priors over grammars
 - Descriptive adequacy? (sufficiently weak inductive bias?)
 - Maybe not, but the formal treatment points the way to more complicated variants (TAG, HPSG, continuous nonterminals ...)

- Models get richer in linguistic insight over time.
 - Helps to start simple.
- Case study: PCFGs
 - Case study: (stochastic) Optimality Theory
 - Formalism just tries to capture the most important things about phonology: interaction among constraints
 - Flexible: no commitment to particular constraints or representations

- Models get richer in linguistic insight over time.
 - Helps to start simple.
- Case study: PCFGs
 - Case study: (stochastic) Optimality Theory
 - Case study: probabilistic semantics?
 - What should we capture initially?
 - What are the basic kinds of objects we're dealing with?
 - How do they fit together?
 - We might not handle verb aspect right away, or physical predicates; but there should be somewhere to fit them in

Reason 3: Lots of specific semantic/pragmatic phenomena ...

- You're probably going to lose now, since that rook is pinned.
- She may have left. Her car is gone.
- I should cancel the milk.
- Children must be carried. [sign on the escalator]
- Most parents are likelier to give in on weekends.
- If you can afford a cheap car, you can afford expensive coffee.
- If you had poured the coffee, it wouldn't have spilled.

Participants

"Big, architectural thinkers"

- Jason Eisner, JHU (CS/cogsci)
- Oren Etzioni, UW/Allen Institute (CS)
- Shalom Lappin, KCL (philosophy)
- <u>Dan Lassiter</u>, Stanford (psycholinguistics)
- Percy Liang, Stanford (CS/stats)
- <u>Staffan Larsson</u>, Gothenburg (philosophy/linguistics)
- David McAllester, TTI-Chicago (CS)
- James Pustejovsky, Brandeis (linguistics)
- Benjamin Van Durme, JHU (CS/cogsci)

JHU students:

- Nick Andrews (CS)
- Drew Reisinger (cogsci)
- Darcey Riley (CS)
- Rachel Rudinger (CS)

Virtual Participants

Couldn't be here this week but asked to be involved

- Joshua Tenenbaum, MIT (cogsci)
- Noah Goodman, Stanford (psych)
- Barbara Partee, UMass (ling)
- Gerhard Jaeger, Tübingen (ling)
- Michael Franke, Amsterdam (ling)
- Christopher Potts, Stanford (ling)
- Kyle Rawlins, JHU (ling)
- Robin Cooper, Gothenburg (phil)
- Igor Douven, Groningen (phil)

- Luke Zettlemoyer, UW (CS)
- Ido Dagan, Bar-Ilan (CS)
- Len Schubert, Rochester (CS)
- Dan Klein, Berkeley (CS)
- JHU students:
 - Frank Ferraro (CS)
 - Pushpendre Rastogi (CS)

(Kyle and Frank are joining next week)

Setting the stage

Mon am: Introductions

- Our goals and interests
- Our desiderata and warnings of pitfalls
- Mon pm: James Pustejovsky (plenary talk)
 - Why it is important to distinguish "possible" from "probable" meaning shifts: How distributions impact linguistic theory

Tue am: Taking stock

- Hard examples
- What's already understood
- Planning our time

Towards a probabilistic language of thought

- Tue am: Shalom Lappin (plenary talk)
 - A Rich Probabilistic Type Theory for the Semantics of Natural Language
- Tue pm: Knowledge representation
 - Belief, theory of mind
 - Metaphor and meaning shift
 - Chalktalk by Darcey/Jason on locally renormalized PCFG?
- Tue pm: Oren Etzioni (plenary talk)
 - Semantics, Science, and 10-Year-Olds
- Wed am: Worlds and situations
 - Generics, quantifiers
 - Modals, conditionals, counterfactuals
 - Chalktalk by Drew on dialogue scenario?

Pragmatics

- Wed am: Dan Lassiter (plenary talk)
 - Bayesian Pragmatics
- Wed pm: Pragmatics
 - Meta-reasoning (chalktalk by Dan?)
 - Presuppositions and implicatures
 - Game theory

Linguisticization

- Wed pm: David McAllester (plenary talk)
 - □ The Problem of Reference
- Thu am: Linguisticization
 - Lexical semantics, event semantics
 - Framing
 - Linguistic marking
 - definiteness, information structure, modality, evidentials, classifiers, conventional implicatures

Grounding

- Thu am: Staffan Larsson (plenary talk)
 - Perceptual Semantics and Coordination in Dialogue
- Thu pm: Grounding
 - Perception
 - Vagueness
 - Temporal and spatial reasoning

Making it happen

- Thu pm: Percy Liang (plenary talk)
 - The State of the Art in Semantic Parsing
- Fri am: Remaining difficult issues
 - E.g., imprecise language, contradictory beliefs, linguistic ambiguity about contrast sets
- Fri am: Martha Palmer (plenary talk)
 - Designing Abstract Meaning Representations for Machine Translation
- Fri pm: Practical next steps toward "semantic Al"
 - Chalktalks by Rachel, Nick?

Goals

- What are the constraints on a full theory?
 - Listen closely to each other ...
- Can we agree on a baseline theory (like PCFG)?
 - Or at least rule out directions that won't work?
- What conceptual / mathematical work still needs to be done?
- What first steps can we take toward actually building semantic AI?
 - Starting with the remaining 3 weeks (student work on PReLiM; Martha's CLAMR group)

Week 1: A blue-sky workshop

- What should computational semantics look like in 10 years? Let's get the foundations right.
- More of what semanticists think about
- Integrated with reasoning and background knowledge ("language of thought")
- Integrated with pragmatics
- Fuller probabilistic treatment (generative)

