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The problem is not what you do not know,
the problem is what you do not know that you do not know

white man
knowledge

native man
knowledge



speech —™> sounds —™> message —> meaning

machine recognition of speech

training

assumption:
* the world did not change since
the machine was trained

“Unknown unknowns” for the machine:
e data distortions that were not seen in the training
 words that are not in the lexicon of the machine

one possible solution:
* on-line adaptation to new situations



Unsupervised adaptation

e generative models

— modify models to increase their likelihoods on
unseen data

* non-generative models (e.g. neural nets)
— modify models so that the estimates still make

Do the estimates make sense?
(Performance monitoring)

1. we know some characteristics of the expected
estimates

2. estimates that are observed on the data on which
the models were trained
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Problem Statement

classitier posterior probabilities
speech — of speech sounds — of speech sounds
(phonemes)

* Having a classifier that yields a frame based
vectors of posterior probabilities for speech
sounds of interest, predict the accuracy of these
estimates without knowing the correct
probabilities on test data but knowing
performance of the classifier on the training data.
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* Do not know the correct answer (ground truth)
* |sthe result good or bad?
* How long does it take to get this info?







Evaluating Performance

How often sound classes occur and how often do they get confused?

N fr Tar p; — vector of sound posteriors at i-th time instant
AC=1/ Nz(pl ) (pl ) N — time interval of the evaluation
i=1

r —th power element-by-element (currently r=0.1)
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Evaluating Performance

How much sounds classes differ and how fast do they change?
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derived on one sentence

_derived on all training data
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estimate reliability from the output of the classifier

estimate reliability by comparing of values on hidden
layers of the network



* 31 processing streams trained on band-limited
data

— clean TIMIT

— TIMIT corrupted by random level subway noise
 test results (39 phoneme posterior estimates

and sentence-level phoneme accuracies) for 8

different noisy conditions for each processing
stream



A Way of Dealing with Unknown Unknowns ?

EXTRACTED INFORMATION * Information in speech is

. 0 coded in redundant
| Per (-)rm-ance dimensions.
| monitoring * Not all dimensions get
AAAAAAAAAANAANAAAA
stream corrupted at the same
selection Lk time.

strong w

| driprs & | briors

stream forming

Stream formation

* Different perceptual modalities

() « Different processing channels
analysis within each modality
4 e Bottom-up and top-down
SPEECH SIGNAL dominated channels

Select only reliable streams for further processing



N parallel processing streams

P(error) = ﬁl—", (error)

i=1

Observed in
* human recognition of frequency-limited and noisy

speech sounds (Fletcher et al)
* human recognition of words in and out of context

(Miller et al, Boothroyd and Nittrouer)

Requires reliable identification of correct answers
in processing streams (knowing when knowing)



Monitoring Performance

Pmiss = (1_P1hit)(1_P2hit)

Pinit  Ponit

observer - false positives and
negatives are possible

I:)miss_observed * (l'Pl)(l'PZ)
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human judgment of density of
pattern in a picture

(adopted from Smith et al 2003)

similar data available for
monkeys, dolphins, rats,...



Multi-stream speech recognition
Variani, Li and Hermansky 2013

o —[Subband 1]-{ANN
:g/ Performance
o0 Monitor
- _8—? Subband 2 [ ANN [
speech - § —° ANN _ phone
signal —>- I —O0 Fusion selecting Viterbi | seduence
= | form 31 : N best Average decoder|
B : processing streams
o " streams
—0—__|
—0—| Subband 5 ANN
o0 |

Phoneme recognition error rates

clean 31 % 28 % 25 %
(matched training and test)
TIMIT with car noise at 0 dB SNR 54 % 38 % 35 %

(training on clean)



