
Generation from AMR
using Tree Transducers

Jeffrey Flanigan

CMU/LTI

Generation from AMR

The boy wants to go.

(w / want-01!
 :ARG0 (b / boy)!
 :ARG1 (g / go-01)!
 :ARG0 b))!

2

want-01
boy

go-01

ARG0
ARG1

ARG0

General Approach

l  Compute spanning tree(s)
l  Tree transducer rules define output hypergraph
-  Transduction rules can depend on input graph

(synthetic rules)
l  Search hypergraph for best output
-  Language model
-  Other features as well

Decoding

want-01

boy

go-01

ARG0

ARG1

ARG0

Decoding

(X (X want-01) [ARG0] [ARG1]) ||| [1] wants [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants a [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants to [2]
(X go-01) ||| go
(X go-01) ||| going
(X boy) ||| the boy

Rule inventory

want-01

boy

go-01

ARG0

ARG1

ARG0

Decoding

(X (X want-01) [ARG0] [ARG1]) ||| [1] wants [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants a [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants to [2]
(X go-01) ||| go
(X go-01) ||| going
(X boy) ||| the boy

[1] wants to [2]

Rule inventory

want-01

boy

go-01

ARG0

ARG1

ARG0

Decoding

(X (X want-01) [ARG0] [ARG1]) ||| [1] wants [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants a [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants to [2]
(X go-01) ||| go
(X go-01) ||| going
(X boy) ||| the boy

the boy wants to [2]

Rule inventory

want-01

boy

go-01

ARG0

ARG1

ARG0

Decoding

(X (X want-01) [ARG0] [ARG1]) ||| [1] wants [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants a [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants to [2]
(X go-01) ||| go
(X go-01) ||| going
(X boy) ||| the boy

the boy wants to go

Rule inventory

want-01

boy

go-01

ARG0

ARG1

ARG0

Rule Extraction

the boy wants a red bicycle .

Rule Extraction

the ((boy) wants a ((red) bicycle)) .

(X red) ||| red
(X (X bicycle [MOD])) ||| [1] bicycle
(X boy) ||| the boy
(X boy) ||| boy
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants [2]
(X (X want-01) [ARG0] [ARG1]) ||| [1] wants a [2]

Problem: Unseen Combinations of Arguments

(w / yell-01
 :ARG0 (b / (boy
 :MOD (l / little)))

(X (X yell-01) [ARG0] [ARG1]) ||| [1] yelled [2]
(X (X yell-01) [ARG0] [ARG1]) ||| [1] yells [2]
(X boy) ||| the boy
(X little) ||| little

Rule inventory

Synthetic Rules

(w / yell-01
 :ARG0 (b / (boy
 :MOD (l / little)))

(X (X yell-01) [ARG0] [ARG1]) ||| [1] yelled [2]
(X (X yell-01) [ARG0] [ARG1]) ||| [1] yells [2]
(X boy) ||| the boy
(X little) ||| little
(X (X yell-01) [ARG0]) ||| [1] yelled
(X (x boy [MOD])) ||| the [1] boy

Rule inventory

Synthetic Rules

(w / yell-01
 :ARG0 (b / (boy
 :MOD (l / little)))

(X (X yell-01) [ARG0] [ARG1]) ||| [1] yelled [2]
(X (X yell-01) [ARG0] [ARG1]) ||| [1] yells [2]
(X boy) ||| the boy
(X little) ||| little
(X (X yell-01) [ARG0]) ||| [1] yelled
(X (x boy [MOD])) ||| the [1] boy

Rule inventory

the little boy yelled

Synthetic Rule Model

l  Associate function words with arguments
(X (X arrest-01) [ARG0] [ARG1] [ARG2]) ||| [1] arrested [2] for [3]

(X (X arrest-01) [ARG1] [LOC] [TIME]) ||| [3] arrests of [1] have occurred at [2]

(X (X arrest-01) [ARG1] [LOC]) ||| [1] have been arrested in [2]

l  Use to define set of possible realizations
(X (X arrest-01) [LOC]) ||| arrests have occurred at [1]

(X (X arrest-01) [LOC]) ||| arrested have occurred at [1]

(X (X arrest-01) [LOC]) ||| arrests in [1]

(X (X arrest-01) [LOC]) ||| arrested in [1]

l  Score with features:

-  Distance from core

-  Observed before (binary)

-  Etc.

Example Output (w/o synthetic rules)

Output: Singaporean Bureau Narcotics Central stated on one 2007 16 Karras
Michael Australia ,was arrested on one nine 2007 with 495 gram of cannabis

Ref: Singapore's Central Narcotics Bureau said on 070116 in a statement that
Australian Michael Karras was arrested on 070109 after being found in
possession of 495 grams of cannabis.

(s / state-01
 :ARG0 (g / government-organization
 :name (n / name :op1 "Central" :op2 "Narcotics" :op3 "Bureau")
 :poss (c / country
 :name (n2 / name
 :op1 "Singapore")))
 :ARG1 (a / arrest-01
 :ARG1 (p2 / person
 :name (n4 / name :op1 "Michael" :op2 "Karras")
 :mod (c3 / country :name (n5 / name :op1 "Australia")))
 :ARG2 (f / find-01
 :ARG1 (p / possess-01
 :ARG0 p2
 :ARG1 (c4 / cannabis
 :quant (m2 / mass-quantity
 :quant 495
 :unit (g4 / gram)))))
 :time (d / date-entity :day 9 :month 1 :year 2007))
 :time (d3 / date-entity :day 16 :month 1 :year 2007))

Future Work

•  Better aligner (projectivity and co-reference)
•  Regular Graph Grammars instead of tree transducers
•  MT experiments (Zh->En, Cz<->En)

