#### JAMR:

# A Graph-Based Parser for the Abstract Meaning Representation

Jeffrey Flanigan, Sam Thomson
Jaime Carbonell, Chris Dyer, Noah A. Smith
CMU/LTI

## **Abstract Meaning Representation (AMR)**

The boy wants to go.

```
(w / want-01
:ARG0 (b / boy)
:ARG1 (g / go-01)
:ARG0 b))
```

## Abstract Meaning Representation (AMR)

The boy wants to go.



Concepts = Nodes

## Abstract Meaning Representation (AMR)

The boy wants to go.



Relations = Edges

### **Parser Overview**

Input

|  | Kevin | Knight | likes | to | semantically | parse | sentences |
|--|-------|--------|-------|----|--------------|-------|-----------|
|--|-------|--------|-------|----|--------------|-------|-----------|

#### **Parser Overview**



#### **Parser Overview**



# **Concept Identification**

## Concept Identification



## Concept Identification



## Relation Identification



### Relation Identification



### Relation Identification



# Maximum Subgraph with Constraints



## Maximum Subgraph with Constraints



## Maximum Subgraph with Constraints



## **Final Output**



## **Experiments**

#### Data

- 4,000 training instances
- 2,000 test
- 2,000 dev

| Concept<br>Identification   | 76% F <sub>1</sub>        |
|-----------------------------|---------------------------|
| Full System (gold concepts) | 80% Smatch F <sub>1</sub> |
| Full System                 | 58% Smatch F <sub>1</sub> |

## Rule-Based Concept Alignment



- For each concept in the amr graph, it searches the sentence for corresponding span of words using a list of rules. It uses:
  - WordNet
  - Edit Distance