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Motivation

= Linguistic relation learning regards most research in
Natural Language Processing:

» syntactic/semantic relations, coreference resolution,
discourse structure, relation extraction between NEs

» such methods typically target constituents spanning one or
multiple sentences

= Relational learning from pairs of entire (short) texts
» joint analysis of relations between different constituents
» textual entailment, paraphrasing, correct vs. incorrect
translation pairs, or question/answer pairs, etc.
= Machine learning methods are typically applied to detect
such relations
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Motivation (2)

= Machine learning models use vector of features:
» several textual similarities applied to the two texts
» computed with different representations
= We use a different approach to relational learning from
text pairs:
» structural/linguistic representation of the text
» semantic links between the constituents
» structural kernels to map them in feature spaces

= Let’s focus on Question Answering relations
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Let’s consider: Passage Reranking

What is
Mark Twain's
real name?

Passage Retrieval

Roll over, Mark Twain,
because Mark McGwire
is on the scene.

Fast Mark Twain couldn't
Recall have put it any better.
7
IR

Samuel Langhorne
Clemens, better known
as Mark Twain.

v

What is —
Mark Twain's
KB
real name?
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Passage Reranking

Slower
Precision
NLP/ML

Mark Twain's

What is

real name?

Roll over, Mark Twain,
because Mark McGwire
is on the scene.

Mark Twain couldn't
have put it any better.
| 4

Samuel Langhorne
Clemens, better known

as Mark Twain.

v

afiy
- -

Samuel Langhorne
Clemens, better known

as Mark Twain. 7

Roll over, Mark Twain,
because Mark McGwire
is on the scene.

v

Mark Twain couldn't
have put it any better.

4

Encoding question/answer pairs
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What is Mark Samuel Langhorne

Twain's real Clemens, better known >
name? ’ as Mark Twain.

What is Mark Roll over, Mark Twain,

Twain's real because Mark McGwire is >
name? > on the scene.




Encoding question/answer pairs

What is Mark Samuel Langhorne
< Twain's real Clemens, better known >
name? > as Mark Twain.

Encode g/a pairs via
similarity features

(0.5, 04030 0.2,...,1.0)
4/\

lexical: n-grams, Jaccard sim., etc.
syntactic: dependency path, TED
semantic: WN path, ESA, etc.

IKs

Encoding question/answer pairs

What is Mark Samuel Langhorne
< Twain's real Clemens, better known >
name? ’ as Mark Twain.

Encode g/a pairs via
similarity features

(0.5,0.4,0.3, o 0.2,.., 1.0)

/\ /\
brittle lexical: n-grams, Jaccard sim., etc.
representation syntactl.c: dependency path, TED
semantic: WN path, ESA, etc.
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Encoding question/answer pairs

What is Mark
Twain's real
name”?

<

b

Complex feature

Samuel Langhorne
Clemens, better known
as Mark Twain.

>

Encode g/a pairs via

BAE

engineering similarity features
(0.5,0.4,0.3,0.0,0.2,..., 1.0)
N\ /\
brittle lexical: n-grams, Jaccard sim., etc.
representation syntactic: dependency path, TED
semantic: WN path, ESA, etc.
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Our approach

= Model g/a pairs explicitly as linguistic structures

= Rely on Kernel Learning to automatically extract and learn
powerful syntactic patterns

What is Mark Samuel Langhorne
< Twain's real Clemens, better known >
name? ’ as Mark Twain.
< ‘,‘/!F \.‘!2 REL rm;L :E‘er\t' POS ]‘ NN r;w;) l..";‘ —;i”p /8 . VBN r’u REL-N |ri LE O 5 O 2 1 O >
il o .. ) ( )
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Part | — Introduction to Structural kernels

Classification function of kernel machines

Kernel Definition (Kernel Trick)

Kernel Operators

String, Syntactic Tree Kernel, Partial Tree kernel
(PTK)
Efficiency

Classification function of
Kernel Machines

The equation of a hyperplane is

F@=%w+b=0, LwER HER

X is the vector representing the classifying example
Wis the gradient of the hyperplane (learned model)
= The classification function is

h(x) = sign(f (X)) 025 ©

Note that the X
hyperplane ®®

classifier is just: X - w>-b @
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Kernel Trick

= Kernel Machines (e.g., SVMs or perceptron) are such that

W= Eo‘jijj

j=1.0

s Hence the classification function results:

sgn(sz-)'c’+b)=sgn( Eajyj?cj-?c+b)

j=1.0

= Note that data only appears in the scalar product
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The main idea of Kernel Functions

= Mapping vectors in a space where they are linearly
separable, X = ¢(x) w— ¢(w)

¢
O 069 ()
0 ¢(0)
0 - P(x)
o ) ¢(0) 5(x)
. $(0)
¢(0)




Classifying in the ¢ space

= In the space ¢ we can rewrite the classification function
as:

h(X) =sgn(¢p(w)-¢(X) +b,) =

=sgn[¢( E ajyj)?j)-¢()?)+b¢)=

j=l..t

=sgn( ¥ a,y ¢(%) (%) +b,) =

=10

=sgn( Y, &,y k(%,%)+b,)

i=1..0

Kernel Function Definition

Def. 2.26 A kernel is a function k, such thatV T,z € X
k(Z,2) = ¢(T) - d(2)

where @ is a mapping from X to an (inner product) feature space.

= Kernels are the product of mapping functions such as

FER", GF) = (9,30, (%), (X)) ER"
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Valid Kernel operations

s Kk(x,z) = k,(X,z)+k,(x,z)
s K(x,2) = K,(X,2)*k,(x,2)
s Kk(x,2) = ak,(x,z)

= K(x,z) = f(x)f(z)

= K(x,z) =x'Bz

= k(x.z) = ki(9(x).¢(2)

Object Transformation [Moschitti et al, CLJ 2008]

= K(0,,0,)=¢(0)) ¢(0,) = ¢.(¢,,(0)) 9 (¢, (O,))
= ¢E(Sl)'¢E(S2) = KE(SlaSz)

= Canonical Mapping, ¢,/
» object transformation,

® €. g., a syntactic parse tree into a verb subcategorization
frame tree.

" Feature Extraction, ¢()
» maps the canonical structure in all its fragments

» different fragment spaces, e.g. String and Tree Kernels
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Syntactic and Partial Tree Kernels

= Linear Kernels

String and Word Sequence Kernels
Syntactic Tree Kernel (STK)

= Partial Tree kernel (PTK)

Linear Kernel

= In Text Categorization documents are word vectors

d(d)=3=(0,.1,.0,.0,..1,..0..0,..1,.0,.0,..1,.0,..,1)

buy market sell stocks trade
dd )=7=(0,.1,.0,.1,..0,.0,.0,.1,.0,.0,.1,.0,.0)
buy company sell stock

= The dot product X * Z counts the number of features in
common

= This provides a sort of similarity
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String Kernel

Given two strings, the number of matches between their
substrings is evaluated

E.g. Bank and Rank

» B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

r R, a,n,k, Ra, Ran, Rank, Rk, an, ank, nk,..

String kernel over sentences and texts

Huge space but there are efficient algorithms

Using character sequences

¢("bank")=x=(0,...1,..,0,...1,...0,......1,..,0,...1,..,0,...1,..,0)
bank ank bnk bk b

¢("rank")=7=(,..0,..,0,..1,..0,....0,...1,..0,..,1,..,0,...1)

rank ank rnk rk r

= X *Z counts the number of common substrings

x-Z=¢("bank"): ¢("rank") = k("bank"," rank")
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Efficient Evaluation: Intuition

=« Dynamic Programming technique over:
= The size of the two input strings, m, n and
= The size of their common substrings, p

= Evaluate the spectrum string kernels
= Substrings of size p

= Sum the contribution of the different p spectra
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Tree kernels

= Syntactic Tree Kernel (STK)
= Partial Tree kernel (PTK)

= Efficient computation
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Example of a parse tree

= “John delivers a talk in Rome”

/S\SeNVP

N VP

| // QeVNPPP
\ NP PP

John
/ o\ / \ PP—INN
deliversD N IN N
‘ ‘ ‘ ‘ N — Rome

a talk in Rome

The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

VP
7
v NP
| /\

delivers D N

a talk




The overall fragment set

VP VP VP

VP /N P\ /NP\ /N "\
| / L/ 7| D N D ND N
v LRAA T LT
/ a talk A talk
D delivers D N D N, D N / (
\ ] IR A N
a a talk a talk At e n/ \m a talk
VP . i |
/| Children are not divided vp
V NP v NPV NPV g .
Py P | /NP\ \| /NP\ V NP vy I\ljp
D ND N delivers D Ndelivers D N | /\
| | | : W delivers delivers D N
a talk a \

talk

IKs

Explicit kernel space

o(T)=x=(,..1,.0,..,..,0,..,1,..0,..1,..0,...1,..,0,...1,..,0)

VP

vp VP NP NI -
V/NlP v/l\l'P V/l\lll’ 'l) / \T [l)/ \N D/ \T
dcli\l'crs D/ \N [)/ \N D/ \N a talk ) talk
Ly |

¢(7;) = Z = (1 "-909--303-"1 ’-'509'-’1 "-707--s1s-'sOs--’O"-al 9--905 30)

VP VP NF NP
/ \ / \
/l /l /[ D N - X
vV NP v NP VvV NP | I
l | 7\ 7\ 1 talk
delivers N D N [I) ]\r <
[
talk

= X *Z counts the number of common substructures
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Efficient evaluation of the scalar product:
Syntactic Tree Kernel (STK)

%-Z=9(T) () = K(T,.T.) =

= 2 EA(nx,nZ)

n, €T, n, €T,

IKs

Efficient evaluation of the scalar product:
Syntactic Tree Kernel (STK)

%-Z=¢(T) §(T)=K(T,,T) =

= E EA(nx,nZ)

n, €T, n, €T,

= [Collins and Duffy, ACL 2002] evaluate A in O(n?):

A(n ,n,)=0, if the productions are different else

A(n ,n,)=1, if pre-terminals else

nc(n,)

A(n,n,)= | | A+Achn,, j),chn,, j))
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Other Adjustments

= Decay factor

A(n,,n )= A, if pre-terminals else

ne(n, )

A(n,.n.) = A [ [+ Alch(n,.j).ch(n..j))

j=1
= Normalization

i K(T,.T))
 JK(T,.T)xK(T,.T,)

K(T.T)
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Observations

= We can order the production rules used in T, and T,, at
loading time

= At learning time we can evaluate NP in
\T.|+|T.| running time [Moschitti, EACL 2006]

» If 7, and T, are generated by only one production rule =
O(T,|x|T,|)...Very Unlikely!!!!




Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

« STK + String Kernel with weighted gaps on nodes’ children

VP VP VP VP VP VP VP VP
7 e | o
v NP v NP NP NP NP NP NP NP
N = SN NN L
brought D N D N D N D N D D N
I [ | NP NP NP
a cat a cat a cat a a / \ /
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Partial Tree Kernel - Definition

- if the node labels of n; and no are different then

A(ny,ns) = 0;

- else (J1)

l
A(ny,ng) = 1+ Z H A(('nl[ji.-']-(‘n._)[-}i])

= By adding two decay factors we obtain:

1(J1)
#<>\2+ Z A1) +d(T2) H A(cﬂ_l[.]li]q(:,,lg[.]‘z,-])>
J1,Jo,1(J1)=1(J3) i=1
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Efficient Evaluation (1)

= In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes

= We treat children as sequences and apply the same theory

A(nb 77,2) — :LL<)‘2 + Z;ﬂil AP(CRNCHQ))

Given the two child sequences s;a = ¢,, and s2b = ¢;,,

(@ and b are the last children), A,(s1a, s2b) = D
p
|s1] [s2l
A(a,b) X ZZ >\|.91|—'11+|.92|—7’ X Ap_l(Sl[l : ?:],82[1 : ’f’])
=1 r=1
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Efficient Evaluation (2)

A(a,b)D,(|s1]. |s2|) if a = b;

0 otherwise.

Ap(s1a,s2b) = {
Note that D, satisfies the recursive relation:

Dl,(/ﬂ. [) = A[,_I(SI [1 . A]S_g[l . l]) -+ /\Dl,(A[ — 1)
+AD, (k= 1,1) + A°D,(k — 1,1 —1).

= The complexity of finding the subsequences is O(p|s1||s2|)

)

= Therefore the overall complexity is O(pp?| N1, || N7,
where p is the maximum branching factor (p = p)
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Running Time of Tree Kernel Functions

120
A
100 r 1
i i A
80 - | ® STK (fast)
>~ 4 STK (slow)
= = PTK (fast) o
2 60 |
5 &
40 &
A
20 | &
= & 5 T Py
— | - el | ° *
: ° ° L4 * *
0 & — . d hd
5 10 15 20 25 30 35 40 45 50 55

Number of Tree Nodes
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Outline: Kernels for Ranking

=« Reranking with kernels
r Preference Kernel
r Reranking Passages with relational representations
r Shallow Syntax + semantic information
r Dependency Trees
r Semantic Roles
r Discourse
r Link Open Data




Relational Kernels for
Passage Reranking

Ks

Preference Reranking for documents/

passages
Hypotheses Pairs Hypotheses
H1 <H1.H2> H4
H2 <H1L,H3> H3
. 3 H4
Search Engine H3 Re-fanker " &
or QA system
<HnHI1~> H1
Hn <Hn,H2> Hn

=« The initial rank is provided by a search engine (or also a
powerful QA system)

= New idea: a boost can be achieved by capturing the relation
between question and answer passage
IKs




More formally

Build a set of hypotheses: Q and A pairs

These are used to build pairs of pairs, <H", Hf>
» positive instances if H' is correct and Hi is not correct

A binary classifier decides if H' is more probable than H

= Each candidate annotation H' is described by a structural
representation

= This way kernels can exploit all dependencies between
features and labels
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Preference Reranking Kernel

H,>H, and H, > H, then consider training vectors:

Z, =¢(H,)-¢(H,) and Z, = ¢(H,) - ¢(H,) = the dot product is:
Zl ¢ 22 =(¢(H1)_¢(H2))°(¢(H3)_¢(H4)) =

¢(H,)* ¢(H;)-p(H,)*¢(H,) = p(H,)* ¢(H;)+¢(H,)* p(H,)
=K(H,,H,)-K(H,H,)-K(H,,H,)+K(H,,H,)

Let H, =<ql.,ai>, H, =<qj, a].>
K(H;, H;)=PTK(q;,q;)+ PTK(a;, a))
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Our approach

= Model g/a pairs explicitly as linguistic structures

= Rely on Kernel Learning to automatically extract
and learn powerful syntactic patterns

What is Mark Samuel Langhorne
< Twain's real Clemens, better known >
name? as Mark Twain.

NP VP REL-NP NP Ve PP REL-NFP
|| [ i
WF VBZ REL-NNP REL-NNP POS ] NN NNP NNP NNP /8 VBN IN REL-NNP REL-NNF
K e e \ " (0.5,0.2,..,1.0) >

y o L ik o ’

= np NP P PP REL-NF
.‘:‘L VF;." REL-NNP REL-NKP POS || NN r;w:' r..-‘_wt- :1v|r =1 VBN IN REL-NNP REL-NNF
< G 0 R | j \ ‘ " (0.5,0.2,..., 1.0) >

y o T i L ’

KTK KTK ] Kfvec

REL-NP

NP VP NP NF P =3
|| [ E / :
WP VBZ REL-NNP REL-NNP POS || NN NAIP NNE NNF 88 VBN IN REL-NNP REL-NNE
< O 8 j : \ (0.5, 0.2,..., 1.0) >




Structural representations of g/a
pairs

= NLP structures are rich sources of features
» Shallow syntactic and dependency trees
= Linking related fragments between question and

answer is important:

» Simple lemma matching (Severyn and Moschitti, 2012)
» Semantic linking (Severyn et al., CoNLL, CIKM 2013)
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Relational shallow trees
(Severyn and Moschitti, 2012)

What is Mark Samuel Langhorne
< Twain's real Clemens, better known >
name? ’ as Mark Twain.
s e s
NP VP REL;ﬁP_,,_——“’:T\;P ljl-I?_/_ a \;‘Eﬁ\::ﬁi-w
< WP VBZ RELNNP RELNNP POS || NN NNP NNP “NNP RE VBN IN REL-NNP REL-NNP >

| l | e | ] |
what be mark twain s real name samuel langhorne clemens better know as mark twain
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Semantic linking
(Severyn et al., 2013)

Find question category (QC):
HUM

s T - s
- Teeell
e & = N —
NP VP REL-NP REL-FOCUS-HUM-NP REL-FOCUS-HUM-NP PP REL-FOCUS-HUM-NP
N T e N - AN
| N T i b N
WP VBZ REL-NNP REL-NNP POS ] NN NNP NNP NNP RE VBN IN REL-NNP REL-NNP
what be mark twain s real name ‘samuel langhorne clemens ibetter know as :mark twain
. focus NER: Person : NER: Person :
s S R B
~ - -
-
IK?
Semantic linking
Find question category (QC):
s T - s
— - Te-a e~
e T == N o o—m,
NP VP REL-NP REL-FOCUS-HUM-NP REL-FOCUS-HUM-NP \\‘\A/P\ PP REL-FOCUS-HUM-NP
< | | / ™~ _— \"-\,\ _»,__.-»“"f / “\”\»;._;_ N o ‘|‘~ -< ‘,// ™~
WP  VBZ REL-NNP REL-NNP POS jl] NN NNP NNP NNP RB VBN IN REL-NNP REL-NNP
| | N s | | T T |
R [ R M .
what be mark twain s real§ name ! :samuel langhorne clemens better know as :mark twain :
focus ' NER: Person : NER: Person
IS <

Find focus (FC):
name
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Semantic linking

Find question category (QC):
HUM

S
- “ e ——
T=VP PP REL-FOCUS-HUM-NP

//A\‘:\‘|‘~~\,,//\

e — -="
NP VP REL-NP REL-FOCUS-HUM-NP
< | | ~.
WP VBZ REL-NNP REL-NNP POS 1 NN
| [ S B S
what be mark twain s real : name !

/ ~—
NNP NNP NNP RE VBN IN REL-NNP REL-NNP
] ! ! ! |
R I I I | | e Y
:samuel langhorne clemens petter know asf:mark twain :
NER: Person !

NER: Person

Find focus (FC):
name

Find entities according to
guestion category in the answer
passage (NER)
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Semantic linking

Find question category (QC):
HUM

s ---==
e _

Link focus word and named
entity tree fragments

— “«--- T
VP REL-NP REL-FOCUS-HUM-NP

I

NP

REL-FOCUS-HUM-NP \‘\A/P\

——
REL-FOCUS-HUM-NP

< | T~
!
WP VBZ REL-NNP REL-NNP POS 1

R 1 Y N O B

PP|
= N
! . / N F =~ A
NNP NNP RB VBN IN REL-NNP REL-NNP

R

what be mark twain s real | name ! :samuel langhorne clemens better know as :mark twain :
focus NER: Person : NER: Person
T ~§"‘ """" P A ”;—'" """""
Z - _—

Find focus (FC):
name

Find entities according to
question category in the answer
passage (NER)
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Experiments and models

=« Data
» TREC QA 2002 & 2003 (824 questions)

= Systems
» BM25 from IR
» CH - shallow tree [Severyn & Moschitti, 2012]
» V - similarity feature vector model
» +FC+QC - semantic linking
» +TFC+QC - typed semantic linking

Feature Vector Representation

= Lexical
» Term-overlap: n-grams of lemmas, POS tags,
dependency triplets
= Syntactic
» Tree kernel score over shallow syntactic and
dependency trees
= QA compatibility
» Question category

» NER relatedness — proportion of NER types related to
the question category
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Structural representations on TREC
QA

MAP MRR P@I
BM25 0.22 28.02 18.17
\% 0.22 28.40 18.54
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Structural representations on TREC
QA

MAP MRR P@I
BM25 28.02 18.17
\Y 28.40 18.54

CH 35.63 24.88




Structural representations on TREC
QA

MAP MRR P@I

BM25

CH
+V

Structural representations on TREC
QA

MAP MRR P@I

BM25

\%

CH

+V
+V+QC+FC




Summary: CH+V+QC+TFC

 What company owns the soft drink brand "Gatorade"? ]
 Question ROOT

Exp. Answer Type:
HUM m 7/‘{;,5”_7 o

\_(Li, Roth, COLING '02) e === —
REL-FOCUS-HUM-NP| V|P REL-NP REL-VP
WP NN |VvBZ DT Jj REL-NN "'N‘N REL‘-VB

| | |

what company | own the soft drink brand |gatorade

« Hard string match
« LDA, WordNet-based
similarity: no
improvement

5
e e ——————
| NE type: ORG | [ ——— N - S
REL-FOCUS-HUM-NP| VP PRT NP REL|—NP PP NP
NNP Nl‘\lP Nf‘\lP VBD R‘P NNP Nl’\JP REL-|NNP II|\I CD
| 1 | 7
quaker oats co. | take over stokely-van camp |gatorade |in 1983

AP
L Stokely-Van Camp started marketing the drink as Gatorade in 1967.

Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.
(Severyn et. al, CoNLL 13, CIKM '13)

CH+V+QC+TFC+SRL

REL-FOCUS-HUM-NP VP 'REL-NP " REL-VP

S |

A ~— ==x

WP NN  AO-own.XX VBZ PRED DT JJ REL-NN NN Al-own.XX RELVB

| | l | | |

what company own the soft drink brand gatorade

ROOT

NP P PRT NP ~ REL-NP PP AN|P

NNP NNP NNP AO-take.XX VBD PRED RP C-V-take.XX NNP NNP Al-take.XX REL-NNP IN CD
\ | \ | \ |

gquaker oats co. take over stokely-van camp gatorade in 1983
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CH+V+QC+TFC+SRL

REL-FOCUS-HUM-NP EL-NP " REL-VP
s T N
WP NN  AO-own.XX VBZ|PRED [DT JJ REL-NN NN Al-own.XX REL-VB
wP|1at com||3any O\INH tfl\e so|ft dri|nk brand gatorade
ROOT
s
NP - ‘V}’i - PRT o NP ~ RELNP PP NP
NNP i\]&P N‘NPVV/Vx'o-rtéke.xx VBD | PRED | RP C-V-take.XX NNP Nl‘\JP 7;73\1'7»t'éke.xx REL-NNP IN CD
qua‘ker oelts cL. taLe ov‘er stoke£y~van camp gatorade in 1983
IKs
CH+V+QC+TFC+SRL
[ <argument label>-predicate ROOT
e
REL-FOCUS-HUM-NP RELNP | RELWP
il P = T |
WP NN AO-own.XX (VBZ| PRED |IDT JJ] REL-NN NN [Al-own.XX |REL-VB
wl’Lat comy|aany ovlvn trlxe sc|>ft dri|nk bra|nd gato|rade
ROOT
s
NP o 7\/_;1 T et NP ~ REL-NP PP NP
NNP };NP N‘;\JF AO-take.XX |VBD [PRED | RP | C-V-take.XX NNP Nl‘\JP ;uit'éke‘xx REL-NNP IN CD
qua‘ker o;ts CL. taLe ov‘er stoke!y-van ca!’np gatorade in 1983
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Dependency tree: DEP+V+QC+TFC

ROOT _
ccoRnP T:F;‘!?I;\i: “PUNCT PUNCT
NSUB) VP \\'boaj < RELVB (g c|>
REL-FOC_JS-HUM-NP v!sz Ff_f_il/.L[\_l_P I gatorade '[' |
wp NN own DT ]JT)REL-NN\NN " l“
wPLat comLany the slft dri|nk bra|nd
|
- ROOT
NSUB] VP PRT - 7 p_QgL  PUNCT PREP PUNCT
ng w|30 PF|>\T NE;/f PUNCT CC  CONJ ci> IJP é
NNP NNP NNP take RP NNP  NNP <|) O REL-NP , IN CD ‘
qua|ker oa|ts cIo. ovler stokel|y-van camp . CC REL-NNP i in 19|83 |
and gatolrade
DEP+V+QC+TFC+SRL
ROOT
_ROOT
K ’cg_0ﬂ>h/ - :{':;Ei?‘:?:NE? PUNCT
NSUB] {’ Ve -&:ti:bioéj‘i‘ T [AT] i c|) c|>
REL-FOC_L/JV[S-HUM-NP VBZ 3:_5_’|_|1§P 'l' gato|rade '|' I
vv.'P" NN own oT JJ/ RELNN WN I l
wl'laat com;l)any tl"re sclﬁ: drilnk bralnd
ROOT
RO|OT
NSUB) me? - 7‘71_:[\)9_\34\ AL PUNCT PREP PUNCT
NP vtlao PIIRT Nf’j 7 PUNCT CC con) <l) IJP <|3
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Results

DEP+V+QC+TFC+SRL
DEP+V+QC+TFC
CH+V+QC+TFC+SRL
CH+V+QC+TFC 40.2
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DEP+V+QC+TFC+SRL
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Discourse
ELABORATIONgqor
JOINT yycieus SPANsarew e
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NNP NNP VBD DT NN VBD VBG DT NN N NNP IN CD Quaker Oats Co. took over Stokely-Van Camp Gatorade in 1983

Stokely-Van Camp bought the formula started marketing the drink as Gatorade in 1967
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Semantic Structures from
Link Open Data

Using Type Match Relation

Q
[ What company owns the soft drink brand "Gatorade"? ]

anchor

Large-scale structured
knowledge dataset

class |
'y

WP NN

what company

Type [Match
(TM)

isa/subclassOf
entity/class |

F anchor

NNP  NNP NNP
| 1 \

quaker oats co

AP
Stokely-Van Camp started marketing the drink as Gatorade in 1967.
L Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

(Timoshenko et. al, EACL’14)




Using Type Match Relation

 What company owns the soft drink brand "Gatorade"? ]

anchor

wP NN
|
what company

Type Match
(T™)

Yago, DBpedia, WordNet
class |

isa/subclassOf
entity/class |

F anchor

Nl]\lP NII\IP NII\IP

quaker oats co.

AP
Stokely-Van Camp started marketing the drink as Gatorade in 1967.
L Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

Linked Open Data

« Structured knowledge published according to
LOD principles

» organized as directed graph/statements




Linked Open Data

« Structured knowledge published according to
LOD principles
» organized as directed graph/statements
» commonly shared knowledge schemes
_ rdfs:subClassOf, rdf:type, rdf:label

Linked Open Data

« Structured knowledge published according to
LOD principles
» organized as directed graph/statements
> commonly shared knowledge schemes
_ rdfs:subClassOf, rdf:type, rdf:label

« > 250 data sets

- DBpedia (> 4 mIn entities): extracted from Wikipedia
> YAGO (> 10 min entities): Wikipedia + WordNet




Match algorithm

. Input: text passages Q, AP; LOD dataset

 What company owns the soft drink brand "Gatorade"? ]

Stokely-Van Camp started marketing the drink as Gatorade in 1967.
L Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

|

Match algorithm

1. Detect anchors in AP
2. For each anchor extract references

Q
[ What company owns the soft drink brand "Gatorade"? ]
If LOD dataset = (YAGO ﬂ B
OR DBpedia) —- )
. YAGO, DBpedla are ’ Wikification -77;‘

aligned with Wikipedia tool
on entity level - -

I

Stokely-Van Camp started marketing the drink as Gatorade in 1967.
L Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

|




Match algorithm

1. Detect anchors in AP
2. For each anchor extract references

Q
 What company owns the soft drink brand "Gatorade"? ]

) wiki:Van Camp%27s L
I a "‘ Attche Tala Cand E4 7 > - ' y
N T "uf WIKIPEDIA Gatorade
3 The Free Encyclopedia Frum Wiipedia the

Wikieema  Quaker Oats Company

vl Van Camp's
\x"”\'lf’l‘.l)l/\ s Amp s The Gatorade Company,
e Vobe deuyeingedia = sodia, Tha ize g0 s 3 birand of sports

Ham page
QUAKS Cormant

A/| Stokely-\?an Camg started marketing the drink as | 1967.
N Quaker Oats Col took over|Stokely-Van Camp| and Gatorade, |in 1983.

Match algorithm

1. Detect anchors in AP
2. For each anchor extract references

[ What company owns the soft drink brand "Gatorade"? ]
sference
yago:Quaker_Oats_Co
mpan
dbpedia:Quaker_Oats_C
ompany
DBpedia

reference

yago:hasWikipedia

WI.KI‘IA'VI:'DIA Quaker Oats Company

f otk the bae sncycsoy
The Guaker Oats ﬁ,,
Company is an Amencan

Quaker Oats Col took over Stokely-Van Camp, and Gatorade, in 1983.

A
N Stokely-Van Camp started marketing the drink as Gatorade in 1967. ]




Match algorithm

1. Detect anchors in AP
2. For each anchor extract references

Q
 What company owns the soft drink brand "Gatorade"? ]

references

If LODK = WordNe*
. Al NP chunksa drink#1 drink#3 drink#5
. Use all senses .

__drink#2 drink#4

A\

AP
Stokely-Van Camp started marketing the brink| as Gatorade in 1967.
L Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

Match algorithm

3. For each reference extract a set of types
- YAGO, DBpedia: rdf:type, rdfs:subclassOf
» WordNet: hypernymy

- rdfs:label yago:wordnet_company
v(;lkl:Qéaker_ 108058098 €T
ats_Compan 1

L0 rdfs:subClassOf

) e company’@en [ yago:wikicategory Companies_ ]
i Qu@ based in_Chicago, lllinois €T

yago:Quaker_
Oats_Compan

¥
N

Quaker Oats Col took over Stokely-Van Camp, and Gatorade, in 1983.

Stokely-Van Camp started marketing the drink as Gatorade in 1967. ]




Match algorithm

4. Match type names to NP chunks in Q

Q
0 | Wha|t comganyl owns the soft drink brand "Gatorade"? ]

- rdfs:label yago:wordnet_company
v(\;lkl:anker_ 108058098 eT
ats Compan
— rdfs:subClassOf
i ,‘f’ Bl [ yago:wikicategory_Companies_ ]
\V,K;,;;_:)IA Quﬁ based in_Chicago, lllinois eT

yago:Quaker_
Qats Compan

s
\

Quaker Oats Co| took over Stokely-Van Camp, and Gatorade, in 1983.

Stokely-Van Camp started marketing the drink as Gatorade in 1967. ]

Match algorithm

4. Match type names to NP chunks in Q

Q

[ Wha owns the soft drink brand "Gatorade"? ]

TYPE MATCH (TM) |

| Quaker Oats Col took over Stokely-Van Camp, and Gatorade, in 1983.

L Stokel‘l-Van Camp started marketing the drink as Gatorade in 1967. ]




Encoding type match: TM

Q
 What company owns the soft drink brand "Gatorade"? ]
RO|OT
PR W
REL:FPCEJ?RH;{J VP %E/L;NE RELWP

—— [

WP | NN  HUM TM |VBZ D’f’J{ “REL-NN | NN TM|| RELVB  TM

what [company own the soft drink fprand gatorade
NP V]"P/ PF|'!T NP —‘-R—E:_LF\IT’:—PF‘ _|\]|P
NNP  TM NNP TM NNP TM|VBD RIP er'\u; TM NNP TM |REL-NNP |||\1 cD
\ |
quaker oats co. take over |stokely-van camp gatorade in 1983

AP

Stokely-Van Camp started marketing the drink as Gatorade in 1967.

g Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

Encoding type match: TM,

Q
[ What company owns the soft drink brand "Gatorade"? ]
ROOT
e e
REL-FOCUSNP VP REL-NP  RELwP
vx(ﬁ " NN HUM TM-PARENT| VBZ D{T"'jf;’REL'-NN NlN TM-PARENT| | REL'VB TM-CHILD
what [company own the soft drink |brand gatorade
NP ] VP 'PF‘{T — 7:}\1‘37 - - ﬂfREfL‘-NP/iF’P
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\
quaker oats co. take over| stokely-van camp gatorade in
ap| Stokely-Van Camp started marketing the drink as Gatorade in 1967.

g Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.




Encoding type match: TM

Q
 What company owns the soft drink brand "Gatorade"? ]
ROOT
Rl
REL-FOCUS-NP VP ~ REL-NP  RELWP

— /

WP | NN  HUM TM-FOCUS| VBZ DT J(A REL-NN | NN TM| [REL-VB TM

| l | | |

what |company own the soft drink brahg! gatorade
oT
s
oW W PRT| NP | RELNP PP
NNP TM-FOCUS TM NNP TM-FOCUS TM NNP TM-FOCUS TN VéD R‘P NNP TM NNP TM REL-JNNP IN
qualker oalts cl)‘ tal(e O\Jer stokely-van camp gato‘rade in

Stokely-Van Camp started marketing the drink as Gatorade in 1967.

APK Quaker Oats Co. took over Stokely-Van Camp, and Gatorade, in 1983.

Wiki-based REL-matching

(L) Who created the literary character|Phineas Fogg? N\ ]
ROOT
NP VP REL-FOCUS-HUM-NP
WP VBlD D[T’;R'E‘[-JT/NN TNNPJREL-NNP "'\ i e

| \

who create the literary character| phineas fogg

ROOT

REL-NP VP REL-NP

REL-FOCUS-HUM-NP

NNP NNP  POS| NNP REL-NNP VBD RElL-JJ NN

jules verne

s | phileas fogg make literapy history when he

AP] Jules Verne's|PhiIeas Foqq fma‘dﬂ@ry history when he traveled
L “around the world in 80 days” in 1873.




Wiki-based REL-matching

Q
[ Who created the literary character| Phineas Fogg?|\ ]
RO|OT

NP VP REL-FOCUS-HUM-NP

WP VBD DT RELJ)  NN[REL-NNP |REL-NNP |17 %,
[

| | et Phileas Fogg
who create the literary character phineas| fogg WIKIPEDIA [; -
0 i
ROOT (i
| y
S Tag it
e e SN L
REL-FOCUS-HUM-NP REL-NP V|P R
erxlé NTP P(l)VS/REL-NNP REL-NNP VBD RE[-J)
jules verne 's | phileas fogg make J#erary history when he

AP Jules Verne's|PhiIeas Fogg h'n'an‘ﬂﬁry history when he traveled
“around the world in 80 days” in 1873.
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Experimental setting (1)

. TREC QA 2002/2003 dataset

- 824 factoid questions + answer patterns
« AQUAINT corpus for answer passage retrieval

« 5-fold cross-validation
- 165 questions for test, 649 questions for training
- 10 answer passages per training question — 4800 examples/fold
- 50 answer passages per test question — 8200 examples/fold

Experimental setting (2)

« Preference reranking with kernels (Severyn et al,
SIGIR '12)

- Partial Tree Kernel for structures (Moschitti, ECML '06)
- polynomial kernel for vectors
. Prune unrelated substructures
« Wikification
wikipediaminer
) ‘:J MachineLinking




Baselines
. IR baseline
» Terrier engine, BM25 model

« Structural baseline (Severyn&Moschitti, CONLL '13)

Baselines

. IR baseline
-~ Terrier engine, BM25 model

 Structural baseline (Severyn&Moschitti, CONLL '13)
» V. feature vector
— Question (Q) /Answer Passage (AP) cosine BOW similarity

— Q/AP Partial Tree Kernel (PTK) similarity
— normalized IR BM25 score




Results

Mean Reciprocal Rank (MRR)

Mean Average Precision (MAP)

SB 40.5
SB, REL only 36.82
IR 28.02
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P@1 (Precision at rank 1)
Structural Baseline + REL
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Results

Mean Reciprocal Rank (MRR) Mean Average Precision (MAP)

+ TMNDF(Y) 44.22
+ TMND(Y+W) 44.25
+ TMNF(Y+W) 44.32
+ TMN(Y+W) 43.98
+ wiki 41.33
SB 40.5
SB, REL only 36.82
IR 28.02
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Results: CH+V+TM

MRR

SB+wiki +TMNF(Y+W)
SB

+ TMNDF(Y+W+D)

+ TMND(Y+W)

+ TMNF(Y+W)

+ TMN(Y+W)

+ wiki

|

44.32
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41.56

42.01

39.17
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‘36.82
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35.61

31.46 . Y: YAGO

33.78 « W: WordNet

33.05 . D: Dbpedia

. SB: CH+V+QC+TFC

30.85

32.07

28.66

‘26.34

(=)

10 15 20 25 30 35 40

State-of-art approaches

. Feature-based models based on
> Quasi-synchronous grammars (Wang, 2007)
- Tree Edit Distance (Heilman & Smith, 2010)

> Probabilistic model to learn TED transformations on
dependency trees (Wang & Manning, 2010)

» CRF + TED features (Yao et al., 2013)
« Structural representation based approaches

- SVM + shallow parse tree representation (Severyn &
Moschitti, 2012), (Severyn et al, 2013)

Our baseline




TREC’13 academic benchmark

» Factoid open-domain TREC QA corpus prepared
by Wang et al. (2007)

« Training data from the 1,229 TREC8-12 questions

* Training questions automatically marked using
regular expressions

» The test data contains 89 questions, whose answers
were manually annotated

 We used 10 answer passages for each question
for training and all the passages for testing
» passages are given (no search engine is needed)

Latest Results on TREC’13

Map MRR
Yao et al., 2013 [35] 63.07 | 74.77
CH+V 65.66 | 74.59
DEP+V 65.87 | 72.68
CH+V+QC+TFC 67.55 | 75.14
CH+V+QC+TFC* (SB) 67.42 | 75.06
DEP+V+QC+TFC 65.78 | 70.79
S B, 69.49 | 74.73
+T M N :Y+W+D 70.75 | 77.71
+T My Y+W+D 71.03%7 | 78.03
+TMpn p:Y+W+D 71.60% | 78.60
+TMpnpr:Y+W+D 71.317 | 77.74
CH+V+QC+TFC+SRL 6791 | 75.66




A glimpse to the exploitation of Direct
Acyclic Graph (DAG)

Three syntactic trees and the resulting DAG

VP VP VP,1 VP,1
/N / N\ | X\
\Y NP NP \ NP V,2 NP,2 NP,1
| RN / \ | A 2 RN
buy D JJ N D N buy D N buy,2 D,3 JJ,1 N,3
I I I I I I I I I
a red car a car a car a,3 red,1 car,3

3




Three syntactic trees and the resulting DAG
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7\
Vv NP NP

I /7 I\ /\
buy D JJ N D N

a red car a car

IKs

Three syntactic trees and the resulting DAG

VP
7\
Vv NP NP

| 7 I\ / \
buy D JJ N D N

a red car a car

IKs




Three syntactic trees and the resulting DAG

vP VP VP,1VP,1
7/ \ /7 \ X< N
\Y NP NP \Y NP V,2 NP,2 ) NP,1
I /7 I\ / \ I / \ 2 I L /\I\\
buy D JJ N D N buy D N buy,2 D,3 JJ,1 N,3
I I I I I I I I I I
a red car a car a car a,3 red,1 car,3

IKs

DAG Kernel
(Severyn&Moschitti, ECML2011)

Theorem 1. Let D be a DAG representing a tree forest F and Kdag(D,Tz) —
ZTMEND ZnQENTZ f(nl)A(nl, n2) then

> TK(Ty,Tz) = Kaag(D, T2), (4)
TleF

where f(ny) is the frequency associated with ny in the DAG.




Computation example

\Y% NP
sell D NN
a car
VP VP VP,1 VP,1 D
/7 N\ /7 \ | X AN
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I I I I I I I I I I
a red car a car a car a,3 red,1 car,3
IKs
Computation example
T VP
2 /\
\Y% NP
sell /D NN
a car
VP VP VP,1 VP, 1 D
/7 N\ 7/ \ X AN
\Y NP NP \Y NP V,2 NP,2 2 NP,
| / 1\ / \ | N e W XX
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Computation example

T VP
2
\Y% NP
sellf D NN
a car
VP VP VP,1 VP,1 D
7/ \ /7 e | X< AN
Vv NP NP \Y NP V,2 NP,2 NP,1
I /7 I\ / \ I / \ 3 I I /\I\‘\
buy D JJ N D N buy D N buy,2 D,3 JJ,1 N,3
I I I I I I I I I I
a red car a car a car a,3 red,1 | car,3
IKs
Conclusions

= Relational Learning from pairs of texts offers great

potential
» many applications, ranging from QA to MT

Using semantic and structural representations is difficult:

» How to engineer rules for exploiting syntactic/semantic

information?
» How to engineer features for learning algorithms?

= We can use powerful ML algorithms and kernel methods

» Kernels can generate many features
» SVMs are robust to noise and irrelevant features

= State of the art in QA and other relational learning tasks

IKs




Future (on going work)

= Deeper modeling of paragraphs: shallow semantics and
discourse structures to design more compact and
accurate representation of whole paragraphs

= Applying automatic JHU-PIRE MR

= Use of reverse kernel engineering to build efficient
systems: [Pighin&Moschitti, CONLL2009, EMNLP2009, CoNLL2010]

Documentation

= Tutorial Webpage
» http://disi.unitn.it/moschitti/SIGIR-tutorial.htm
» Software
» Data: Question Classification and Paragraph reranking
» Updated slides
» Papers
» Books




An introductory book on SVMs, Kernel
Methods and Text Categorization
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Forthcoming 2014

= State-of-the-art Kernels in Natural Language Processing
Author: Alessandro Moschitti
Synthesis Lectures on Human Language Technologies
Editor: Morgan & Claypool Publishers

State-of-the-art Kernels in
Natural Language
Processing

Alessandro
Moschitti
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