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Introduction

Overview of the Course

1. Introduction to dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Multiword expressions in dependency parsing

4. Practical lab session (MaltParser)
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Introduction

Plan for this Lecture

I Graph-based parsing:
I Basic concepts
I Projective parsing
I Non-projective parsing

I Transition-based parsing
I Basic concepts
I Beam search and structured prediction
I Non-projective parsing
I Joint morphological and syntactic analysis

I Conclusion and outlook
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Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T ) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G
I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T ) = argmax
T∈Gx

m∑
c=1

s(Gc)
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Graph-Based Parsing

Learning

I We will assume scoring function is a linear classifier
I s(T ) =

∑m
c=1 s(Gc) =

∑m
c=1 w · f(Gc)

I f ∈ Rn is a feature representation of the subgraph Gc

I w ∈ Rn is a corresponding weight vector

I We will assume that learning is solved
I Linear scoring plus inference allows us to use Perceptron,

MIRA, etc. to find suitable w
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Projective Parsing

Parameterizing Graph-Based Parsing

First-order (arc-factored) model

I Scored subgraph Gc is a single arc (i , j , k)
I s(T ) =

∑m
c=1 s(Gc) =

∑
(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T ) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees
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Projective Parsing

First-Order Projective Parsing

Eisner algorithm
[Eisner 1996]

ROOT      John          saw         Mary

30 s(saw → Mary) = 30

s(saw → John) = 30
30

0 + 30 = 30 0 + 30 = 30

30 + 10 = 40
s(root → saw) = 10

00 0 0 0 0 0

40 + 30 = 70

ROOT      John          saw         Mary

Chart items either:
1) Create a new dependency
2) Absorb left/right subtree

Each chart item store two indexes:
1) left boundary
2) right boundary

All operations require
3 indexes: O(n3)

1 2

3
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Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod
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Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, cannot have features over multiple
arcs (siblings, grandparents), valency, etc.

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

valency=2
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Projective Parsing

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I E.g., First-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp
The major question in graph-based parsing in recent years has been

how to increase scope of features to larger subgraphs, without
making inference intractable.
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Projective Parsing
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Projective Parsing

Higher-Order Parsing

I Two main dimensions of higher-order features
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”
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Projective Parsing

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) is the score of creating adjacent arcs xi → xj and
xi → xj ′

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .
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Projective Parsing

2nd-Order Horizontal Projective Parsing

I Add a sibling chart item to get to O(n3)

i j j j’

ji
j

j’

i
j’

j j’i

s(i, j, j’)
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Projective Parsing

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)

h m h ms

g mh

HORIZONTAL CONTEXT

V
E

R
TI

C
A

L 
C

O
N

TE
X

T

* From Koo et al. 2010 presentation

h mss’

g mh s

1

1

2

32

O(n3) O(n3)

O(n4) O(n4)

O(n4)

h mss’

O(n5)g
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Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection
I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning
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Projective Parsing

Projective Parsing Summary

I Can augment chart (dynamic program) to increase scope of
features, but comes at complexity cost

I Solution: use pruning approximations

En-UAS Zh-UAS

1st order exact 91.8 84.4
2nd order exact 92.4 86.6
3rd order exact∗ 93.0 86.8
4th order exact† 93.4 87.4

struct. pred. casc.‡ 93.1 –
cube-pruning? 93.5 87.9

∗[Koo and Collins 2010], †[Ma and Zhao 2012], ‡[Rush and Petrov 2012], ?[Zhang et al. 2013]

Cube-pruning is 5x faster and structured prediction cascades 10x faster than third-order
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Non-Projective Parsing

Non-Projective Parsing

I First-order (arc-factored) parsing
I Equivalent to MST problem [McDonald et al. 2005]

I For directed graphs, also called arboresence problem
I O(n2) parsing [Chu and Liu 1965, Edmonds 1967]

I Greedy algorithm, not dynamic programming

ROOT What did economic news have little effect on ?
ROOT adj verb adj noun verb adj noun prep .

pobj

aux

nsubjamod

dobj

prep

amod

p

root
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Non-Projective Parsing

Higher-Order Non-Projective Parsing

I McDonald and Satta [2007]:
I Parsing is NP-hard for all

higher-order features
I Horizontal, vertical, valency, etc.
I Even seemingly simple arc features like “Is this the only

modifier” result in intractability
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Non-Projective Parsing

Higher-Order Non-Projective Parsing

I Exact: integer linear programming (ILP)
[Riedel and Clarke 2006, Kübler et al. 2009, Martins et al. 2009]

I Inference intractable, but efficient optimizers exist
I Easy to extend by adding labels, grammar constraints, etc.
I Related to constraint dependency grammar

I Approximate inference: T ∗ = argmax T∈Gx s(T )
I Post-processing [McDonald and Pereira 2006],

[Hall and Novák 2005], [Hall 2007]
I Sampling [Nakagawa 2007]
I Belief Propagation [Smith and Eisner 2008]
I Dual Decomposition [Koo et al. 2010]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T )

I Mildly non-projective structures
[Bodirsky et al. 2005, Pitler et al. 2012, Pitler et al. 2013]
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Transition-Based Dependency Parsing

Transition-Based Dependency Parsing

I The basic idea:
I Define a transition system for dependency parsing
I Learn a model for scoring possible transitions
I Parse by searching for the optimal transition sequence
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Transition-Based Dependency Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([ ], [0, 1, . . . , n], { })

Terminal: (S , [ ],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Reduce: (S |i ,B,A) ⇒ (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A) ⇒ (S |i |j ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i , j |B,A) ⇒ (S , j |B,A ∪ {(j , i , k)}) ¬h(i ,A) ∧ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = buffer with head j and remainder B

h(i ,A) = i has a head in A
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Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, Economic]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, news]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, little]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)



Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root
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Transition-Based Dependency Parsing

Example Transition Sequence
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adj noun verb adj noun prep adj noun .

amod nsubj

dobj
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pmod

amod

p

root
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Transition-Based Dependency Parsing

Arc-Standard Transition System [Nivre 2004]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([ ], [0, 1, . . . , n], { })

Terminal: ([0], [ ],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0
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Transition-Based Dependency Parsing

Greedy Inference

I Given an oracle o that correctly predicts the next transition
o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ← ([ ]S , [0, 1, . . . , n]B , { })
2 while Bc 6= [ ]
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Complexity given by upper bound on number of transitions

I Parsing in O(n) time for the arc-eager transition system
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Transition-Based Dependency Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data
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Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

pos(S2) = ROOT

pos(S1) = verb
pos(S0) = noun
pos(B0) = prep
pos(B1) = adj
pos(B2) = noun

I Feature representation unconstrained by parsing algorithm
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Transition-Based Dependency Parsing

Local Learning

I Given a treebank:
I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Any (unstructured) classifier will do (SVMs are popular)

I Training is local and restricted to oracle configurations
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Transition-Based Dependency Parsing

Greedy, Local, Transition-Based Parsing

I Advantages:
I Highly efficient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

I The major question in recent research on transition-based
parsing has been how to improve learning and inference, while
maintaining high efficiency and rich feature models
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Transition-Based Dependency Parsing

Empirical Analysis

I CoNLL 2006 shared task [Buchholz and Marsi 2006]:
I MaltParser [Nivre et al. 2006] – deterministic, local learning
I MSTParser [McDonald et al. 2006] – exact, global learning
I Same average parsing accuracy over 13 languages

I Comparative error analysis [McDonald and Nivre 2007]:
I MaltParser more accurate on short dependencies and

disambiguation of core grammatical functions
I MSTParser more accurate on long dependencies and

dependencies near the root of the tree

I Hypothesized explanation for MaltParser results:
I Rich features counteracted by error propagation
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Transition-Based Dependency Parsing

Precision by Dependency Length
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Beam Search and Structured Prediction

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:

Parse(w1, . . . ,wn)
1 Beam ← {([ ]S , [0, 1, . . . , n]B , { })}
2 while ∃c ∈ Beam [Bc 6= [ ]]
3 foreach c ∈ Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam ← Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1, Beam))

I Note:
I Score(c0, . . . , cm) =

∑m
i=1 w · f(ci−1, ti )

I Simple combination of locally normalized classifier scores
I Marginal gains in accuracy
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Beam Search and Structured Prediction

Structured Prediction

I Parsing as structured prediction [Zhang and Clark 2008]:
I Minimize loss over entire transition sequence
I Use beam search to find highest-scoring sequence

I Factored feature representations:

f(c0, . . . , cm) =
m∑
i=1

f(ci−1, ti )

I Online learning from oracle transition sequences:
I Structured perceptron [Collins 2002]
I Early update [Collins and Roark 2004]
I Max-violation update [Huang et al. 2012]
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Beam Search and Structured Prediction

Beam Size and Training Iterations

[Zhang and Clark 2008]
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Beam Search and Structured Prediction

The Best of Two Worlds?

I Like graph-based dependency parsing (MSTParser):
I Global learning – minimize loss over entire sentence
I Non-greedy search – accuracy increases with beam size

I Like (old school) transition-based parsing (MaltParser):
I Highly efficient – complexity still linear for fixed beam size
I Rich features – no constraints from parsing algorithm
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Beam Search and Structured Prediction

Precision by Dependency Length
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[Zhang and Nivre 2012]
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Non-Projective Parsing

Non-Projective Parsing

I So far only projective parsing models
I Non-projective parsing harder even with greedy inference

I Non-projective: n(n − 1) arcs to consider – O(n2)

I Projective: at most 2(n − 1) arcs to consider – O(n)

I Approaches:
I Pseudo-projective parsing [Nivre and Nilsson 2005]
I Extended arc transitions [Attardi 2006]
I List-based algorithms [Covington 2001, Nivre 2007]
I Online reordering [Nivre 2009, Nivre et al. 2009]:
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Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Non-Projective Parsing

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([ ], [0, 1, . . . , n], { })

Terminal: ([0], [ ],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,A) ⇒ (S |j , i |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:
1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees
I T is projective with respect to <p but not (necessarily) <
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Non-Projective Parsing

Example Transition Sequence

[ ]S [ROOT, A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Non-Projective Parsing

Example Transition Sequence

[ROOT]S [A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Non-Projective Parsing

Example Transition Sequence

[ROOT, A]S [hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Non-Projective Parsing

Example Transition Sequence

[ROOT, A, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Non-Projective Parsing

Example Transition Sequence
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Non-Projective Parsing
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Non-Projective Parsing

Analysis

I Correctness:
I Sound and complete for the class of non-projective trees

I Complexity for greedy or beam search parsing:
I Quadratic running time in the worst case
I Linear running time in the average case

I Works well with beam search and structured prediction

Czech German
LAS UAS LAS UAS

Projective 80.8 86.3 86.2 88.5
Reordering 83.9 89.1 88.7 90.9

[Bohnet and Nivre 2012]
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Joint Morphological and Syntactic Analysis

Morphology and Syntax

I Morphological analysis in dependency parsing:
I Crucially assumed as input, not predicted by the parser
I Pipeline approach may lead to error propagation
I Most PCFG-based parsers at least predict their own tags

I Recent interest in joint models for morphology and syntax:
I Graph-based [McDonald 2006, Lee et al. 2011, Li et al. 2011]
I Transition-based [Hatori et al. 2011, Bohnet and Nivre 2012]

I Can improve both morphology and syntax
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Joint Morphological and Syntactic Analysis

Transition System for Morphology and Syntax

Configuration: (S ,B,M,A) [M = Morphology]

Initial: ([ ], [0, 1, . . . , n], { }, { })

Terminal: ([0], [ ],M,A)

Shift(p): (S , i |B,M,A) ⇒ (S |i ,B,M ∪ {(i ,m)},A)

Right-Arc(k): (S |i |j ,B,M,A) ⇒ (S |i ,B,M,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,M,A) ⇒ (S |j ,B,M,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,M,A) ⇒ (S |j , i |B,M,A) 0 < i < j

I Transition-based parsing with three interleaved processes:
I Assign morphology when words are shifted onto the stack
I Optionally sort words into projective order <p

I Build dependency tree T by connecting adjacent subtrees
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Joint Morphological and Syntactic Analysis

Parsing Richly Inflected Languages

I Full morphological analysis: lemma + postag + features
I Beam search and structured predication
I Parser selects from k best tags + features
I Rule-based morphology provides additional features

I Evaluation metrics:
I PM = morphology (postag + features)
I LAS = labeled attachment score

Czech Finnish German Hungarian Russian
PM LAS PM LAS PM LAS PM LAS PM LAS

Pipeline 93.0 83.1 88.8 79.9 89.1 91.8 96.1 88.4 92.6 87.4
Joint 94.4 83.5 91.6 82.5 91.2 92.1 97.4 89.1 95.1 88.0

[Bohnet et al. 2013]
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Conclusion and Outlook

Where do we stand?

2008

2014

Graph-based Parsers
Global Inference
Global Learning

Local Feature Scope

Transition-based Parsers
Local Inference
Local Learnng

Global Feature Scope

Graph-based Parsers
Global Inference
Global Learnng

Global Feature Scope

Transition-based Parsers
Global Inference
Global Learnng

Global Feature Scope

beam search
perceptron
dynamic oracles
dynamic programming
more features
etc.

higher-order chart parsing
pruning
ILP
dual decomp
mildly non-projective
etc.

LAS: 83.8 v. 83.6
[McDonald & Nivre 2007]

LAS: 85.8 v. 85.5
[Zhang et al. 2013]

**Evaluated on overlapping 9 languages in studies**
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Coming Up Next

1. Introduction to dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Multiword expressions in dependency parsing

4. Practical lab session (MaltParser)
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