
Graph-Based and Transition-Based

Dependency Parsing

Joakim Nivre

Uppsala University
Linguistics and Philology

Based on previous tutorials with Ryan McDonald

Graph-Based and Transition-Based Dependency Parsing 1(44)

Introduction

Overview of the Course

1. Introduction to dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Multiword expressions in dependency parsing

4. Practical lab session (MaltParser)

Graph-Based and Transition-Based Dependency Parsing 2(44)

Introduction

Plan for this Lecture

I Graph-based parsing:
I Basic concepts
I Projective parsing
I Non-projective parsing

I Transition-based parsing
I Basic concepts
I Beam search and structured prediction
I Non-projective parsing
I Joint morphological and syntactic analysis

I Conclusion and outlook

Graph-Based and Transition-Based Dependency Parsing 3(44)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G
I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 4(44)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G
I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 4(44)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G
I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 4(44)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 4(44)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Valid dependency trees for x equivalent to directed spanning
trees T of Gx rooted at w0

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Each Gc need not be a subtree

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G
I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 4(44)

Graph-Based Parsing

Learning

I We will assume scoring function is a linear classifier
I s(T) =

∑m
c=1 s(Gc) =

∑m
c=1 w · f(Gc)

I f ∈ Rn is a feature representation of the subgraph Gc

I w ∈ Rn is a corresponding weight vector

I We will assume that learning is solved
I Linear scoring plus inference allows us to use Perceptron,

MIRA, etc. to find suitable w

Graph-Based and Transition-Based Dependency Parsing 5(44)

Graph-Based Parsing

Learning

I We will assume scoring function is a linear classifier
I s(T) =

∑m
c=1 s(Gc) =

∑m
c=1 w · f(Gc)

I f ∈ Rn is a feature representation of the subgraph Gc

I w ∈ Rn is a corresponding weight vector

I We will assume that learning is solved
I Linear scoring plus inference allows us to use Perceptron,

MIRA, etc. to find suitable w

Graph-Based and Transition-Based Dependency Parsing 5(44)

Graph-Based Parsing

Learning

I We will assume scoring function is a linear classifier
I s(T) =

∑m
c=1 s(Gc) =

∑m
c=1 w · f(Gc)

I f ∈ Rn is a feature representation of the subgraph Gc

I w ∈ Rn is a corresponding weight vector

I We will assume that learning is solved
I Linear scoring plus inference allows us to use Perceptron,

MIRA, etc. to find suitable w

Graph-Based and Transition-Based Dependency Parsing 5(44)

Graph-Based Parsing

Learning

I We will assume scoring function is a linear classifier
I s(T) =

∑m
c=1 s(Gc) =

∑m
c=1 w · f(Gc)

I f ∈ Rn is a feature representation of the subgraph Gc

I w ∈ Rn is a corresponding weight vector

I We will assume that learning is solved
I Linear scoring plus inference allows us to use Perceptron,

MIRA, etc. to find suitable w

Graph-Based and Transition-Based Dependency Parsing 5(44)

Projective Parsing

Parameterizing Graph-Based Parsing

First-order (arc-factored) model

I Scored subgraph Gc is a single arc (i , j , k)
I s(T) =

∑m
c=1 s(Gc) =

∑
(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees

Graph-Based and Transition-Based Dependency Parsing 6(44)

Projective Parsing

Parameterizing Graph-Based Parsing

First-order (arc-factored) model

I Scored subgraph Gc is a single arc (i , j , k)
I s(T) =

∑m
c=1 s(Gc) =

∑
(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees

Graph-Based and Transition-Based Dependency Parsing 6(44)

Projective Parsing

First-Order Projective Parsing

Eisner algorithm
[Eisner 1996]

ROOT John saw Mary

30 s(saw → Mary) = 30

s(saw → John) = 30
30

0 + 30 = 30 0 + 30 = 30

30 + 10 = 40
s(root → saw) = 10

00 0 0 0 0 0

40 + 30 = 70

ROOT John saw Mary

Chart items either:
1) Create a new dependency
2) Absorb left/right subtree

Each chart item store two indexes:
1) left boundary
2) right boundary

All operations require
3 indexes: O(n3)

1 2

3

Graph-Based and Transition-Based Dependency Parsing 7(44)

Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 8(44)

Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 8(44)

Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 8(44)

Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 8(44)

Projective Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I I.e., Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, cannot have features over multiple
arcs (siblings, grandparents), valency, etc.

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

valency=2

Graph-Based and Transition-Based Dependency Parsing 8(44)

Projective Parsing

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I E.g., First-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp
The major question in graph-based parsing in recent years has been

how to increase scope of features to larger subgraphs, without
making inference intractable.

Graph-Based and Transition-Based Dependency Parsing 9(44)

Projective Parsing

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I E.g., First-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp

The major question in graph-based parsing in recent years has been
how to increase scope of features to larger subgraphs, without

making inference intractable.

Graph-Based and Transition-Based Dependency Parsing 9(44)

Projective Parsing

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I E.g., First-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp

The major question in graph-based parsing in recent years has been
how to increase scope of features to larger subgraphs, without

making inference intractable.

Graph-Based and Transition-Based Dependency Parsing 9(44)

Projective Parsing

Higher-Order Parsing

I Two main dimensions of higher-order features
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”

Graph-Based and Transition-Based Dependency Parsing 10(44)

Projective Parsing

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) is the score of creating adjacent arcs xi → xj and
xi → xj ′

s(T) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .

Graph-Based and Transition-Based Dependency Parsing 11(44)

Projective Parsing

2nd-Order Horizontal Projective Parsing

I Add a sibling chart item to get to O(n3)

i j j j’

ji
j

j’

i
j’

j j’i

s(i, j, j’)

Graph-Based and Transition-Based Dependency Parsing 12(44)

Projective Parsing

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)

h m h ms

g mh

HORIZONTAL CONTEXT

V
E

R
TI

C
A

L
C

O
N

TE
X

T

* From Koo et al. 2010 presentation

h mss’

g mh s

1

1

2

32

O(n3) O(n3)

O(n4) O(n4)

O(n4)

h mss’

O(n5)g

Graph-Based and Transition-Based Dependency Parsing 13(44)

Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection
I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning

Graph-Based and Transition-Based Dependency Parsing 14(44)

Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection
I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning

Graph-Based and Transition-Based Dependency Parsing 14(44)

Projective Parsing

Projective Parsing Summary

I Can augment chart (dynamic program) to increase scope of
features, but comes at complexity cost

I Solution: use pruning approximations

En-UAS Zh-UAS

1st order exact 91.8 84.4
2nd order exact 92.4 86.6
3rd order exact∗ 93.0 86.8
4th order exact† 93.4 87.4

struct. pred. casc.‡ 93.1 –
cube-pruning? 93.5 87.9

∗[Koo and Collins 2010], †[Ma and Zhao 2012], ‡[Rush and Petrov 2012], ?[Zhang et al. 2013]

Cube-pruning is 5x faster and structured prediction cascades 10x faster than third-order

Graph-Based and Transition-Based Dependency Parsing 15(44)

Non-Projective Parsing

Non-Projective Parsing

I First-order (arc-factored) parsing
I Equivalent to MST problem [McDonald et al. 2005]

I For directed graphs, also called arboresence problem
I O(n2) parsing [Chu and Liu 1965, Edmonds 1967]

I Greedy algorithm, not dynamic programming

ROOT What did economic news have little effect on ?
ROOT adj verb adj noun verb adj noun prep .

pobj

aux

nsubjamod

dobj

prep

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 16(44)

Non-Projective Parsing

Higher-Order Non-Projective Parsing

I McDonald and Satta [2007]:
I Parsing is NP-hard for all

higher-order features
I Horizontal, vertical, valency, etc.
I Even seemingly simple arc features like “Is this the only

modifier” result in intractability

Graph-Based and Transition-Based Dependency Parsing 17(44)

Non-Projective Parsing

Higher-Order Non-Projective Parsing

I Exact: integer linear programming (ILP)
[Riedel and Clarke 2006, Kübler et al. 2009, Martins et al. 2009]

I Inference intractable, but efficient optimizers exist
I Easy to extend by adding labels, grammar constraints, etc.
I Related to constraint dependency grammar

I Approximate inference: T ∗ = argmax T∈Gx s(T)
I Post-processing [McDonald and Pereira 2006],

[Hall and Novák 2005], [Hall 2007]
I Sampling [Nakagawa 2007]
I Belief Propagation [Smith and Eisner 2008]
I Dual Decomposition [Koo et al. 2010]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T)

I Mildly non-projective structures
[Bodirsky et al. 2005, Pitler et al. 2012, Pitler et al. 2013]

Graph-Based and Transition-Based Dependency Parsing 18(44)

Non-Projective Parsing

Higher-Order Non-Projective Parsing

I Exact: integer linear programming (ILP)
[Riedel and Clarke 2006, Kübler et al. 2009, Martins et al. 2009]

I Inference intractable, but efficient optimizers exist
I Easy to extend by adding labels, grammar constraints, etc.
I Related to constraint dependency grammar

I Approximate inference: T ∗ = argmax T∈Gx s(T)
I Post-processing [McDonald and Pereira 2006],

[Hall and Novák 2005], [Hall 2007]
I Sampling [Nakagawa 2007]
I Belief Propagation [Smith and Eisner 2008]
I Dual Decomposition [Koo et al. 2010]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T)

I Mildly non-projective structures
[Bodirsky et al. 2005, Pitler et al. 2012, Pitler et al. 2013]

Graph-Based and Transition-Based Dependency Parsing 18(44)

Non-Projective Parsing

Higher-Order Non-Projective Parsing

I Exact: integer linear programming (ILP)
[Riedel and Clarke 2006, Kübler et al. 2009, Martins et al. 2009]

I Inference intractable, but efficient optimizers exist
I Easy to extend by adding labels, grammar constraints, etc.
I Related to constraint dependency grammar

I Approximate inference: T ∗ = argmax T∈Gx s(T)
I Post-processing [McDonald and Pereira 2006],

[Hall and Novák 2005], [Hall 2007]
I Sampling [Nakagawa 2007]
I Belief Propagation [Smith and Eisner 2008]
I Dual Decomposition [Koo et al. 2010]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T)

I Mildly non-projective structures
[Bodirsky et al. 2005, Pitler et al. 2012, Pitler et al. 2013]

Graph-Based and Transition-Based Dependency Parsing 18(44)

Non-Projective Parsing

Higher-Order Non-Projective Parsing

I Exact: integer linear programming (ILP)
[Riedel and Clarke 2006, Kübler et al. 2009, Martins et al. 2009]

I Inference intractable, but efficient optimizers exist
I Easy to extend by adding labels, grammar constraints, etc.
I Related to constraint dependency grammar

I Approximate inference: T ∗ = argmax T∈Gx s(T)
I Post-processing [McDonald and Pereira 2006],

[Hall and Novák 2005], [Hall 2007]
I Sampling [Nakagawa 2007]
I Belief Propagation [Smith and Eisner 2008]
I Dual Decomposition [Koo et al. 2010]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T)

I Mildly non-projective structures
[Bodirsky et al. 2005, Pitler et al. 2012, Pitler et al. 2013]

Graph-Based and Transition-Based Dependency Parsing 18(44)

Transition-Based Dependency Parsing

Transition-Based Dependency Parsing

I The basic idea:
I Define a transition system for dependency parsing
I Learn a model for scoring possible transitions
I Parse by searching for the optimal transition sequence

Graph-Based and Transition-Based Dependency Parsing 19(44)

Transition-Based Dependency Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: (S , [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Reduce: (S |i ,B,A) ⇒ (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A) ⇒ (S |i |j ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i , j |B,A) ⇒ (S , j |B,A ∪ {(j , i , k)}) ¬h(i ,A) ∧ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = buffer with head j and remainder B

h(i ,A) = i has a head in A

Graph-Based and Transition-Based Dependency Parsing 20(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, Economic]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, news]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, little]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, financial]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on, markets]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, effect]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, .]S []B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 21(44)

Transition-Based Dependency Parsing

Arc-Standard Transition System [Nivre 2004]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Graph-Based and Transition-Based Dependency Parsing 22(44)

Transition-Based Dependency Parsing

Greedy Inference

I Given an oracle o that correctly predicts the next transition
o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ← ([]S , [0, 1, . . . , n]B , { })
2 while Bc 6= []
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Complexity given by upper bound on number of transitions

I Parsing in O(n) time for the arc-eager transition system

Graph-Based and Transition-Based Dependency Parsing 23(44)

Transition-Based Dependency Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data

Graph-Based and Transition-Based Dependency Parsing 24(44)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

pos(S2) = ROOT

pos(S1) = verb
pos(S0) = noun
pos(B0) = prep
pos(B1) = adj
pos(B2) = noun

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 25(44)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

word(S2) = ROOT

word(S1) = had
word(S0) = effect
word(B0) = on
word(B1) = financial
word(B2) = markets

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 25(44)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

dep(S1) = root
dep(lc(S1)) = nsubj
dep(rc(S1)) = dobj
dep(S0) = dobj
dep(lc(S0) = amod
dep(rc(S0) = NIL

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 25(44)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 25(44)

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 25(44)

Transition-Based Dependency Parsing

Local Learning

I Given a treebank:
I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Any (unstructured) classifier will do (SVMs are popular)

I Training is local and restricted to oracle configurations

Graph-Based and Transition-Based Dependency Parsing 26(44)

Transition-Based Dependency Parsing

Greedy, Local, Transition-Based Parsing

I Advantages:
I Highly efficient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

I The major question in recent research on transition-based
parsing has been how to improve learning and inference, while
maintaining high efficiency and rich feature models

Graph-Based and Transition-Based Dependency Parsing 27(44)

Transition-Based Dependency Parsing

Empirical Analysis

I CoNLL 2006 shared task [Buchholz and Marsi 2006]:
I MaltParser [Nivre et al. 2006] – deterministic, local learning
I MSTParser [McDonald et al. 2006] – exact, global learning
I Same average parsing accuracy over 13 languages

I Comparative error analysis [McDonald and Nivre 2007]:
I MaltParser more accurate on short dependencies and

disambiguation of core grammatical functions
I MSTParser more accurate on long dependencies and

dependencies near the root of the tree

I Hypothesized explanation for MaltParser results:
I Rich features counteracted by error propagation

Graph-Based and Transition-Based Dependency Parsing 28(44)

Transition-Based Dependency Parsing

Precision by Dependency Length

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9 MST
Malt

Graph-Based and Transition-Based Dependency Parsing 29(44)

Beam Search and Structured Prediction

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:

Parse(w1, . . . ,wn)
1 Beam ← {([]S , [0, 1, . . . , n]B , { })}
2 while ∃c ∈ Beam [Bc 6= []]
3 foreach c ∈ Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam ← Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1, Beam))

I Note:
I Score(c0, . . . , cm) =

∑m
i=1 w · f(ci−1, ti)

I Simple combination of locally normalized classifier scores
I Marginal gains in accuracy

Graph-Based and Transition-Based Dependency Parsing 30(44)

Beam Search and Structured Prediction

Structured Prediction

I Parsing as structured prediction [Zhang and Clark 2008]:
I Minimize loss over entire transition sequence
I Use beam search to find highest-scoring sequence

I Factored feature representations:

f(c0, . . . , cm) =
m∑
i=1

f(ci−1, ti)

I Online learning from oracle transition sequences:
I Structured perceptron [Collins 2002]
I Early update [Collins and Roark 2004]
I Max-violation update [Huang et al. 2012]

Graph-Based and Transition-Based Dependency Parsing 31(44)

Beam Search and Structured Prediction

Beam Size and Training Iterations

[Zhang and Clark 2008]

Graph-Based and Transition-Based Dependency Parsing 32(44)

Beam Search and Structured Prediction

The Best of Two Worlds?

I Like graph-based dependency parsing (MSTParser):
I Global learning – minimize loss over entire sentence
I Non-greedy search – accuracy increases with beam size

I Like (old school) transition-based parsing (MaltParser):
I Highly efficient – complexity still linear for fixed beam size
I Rich features – no constraints from parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 33(44)

Beam Search and Structured Prediction

Precision by Dependency Length

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9 MST
Malt
ZPar

[Zhang and Nivre 2012]

Graph-Based and Transition-Based Dependency Parsing 34(44)

Non-Projective Parsing

Non-Projective Parsing

I So far only projective parsing models
I Non-projective parsing harder even with greedy inference

I Non-projective: n(n − 1) arcs to consider – O(n2)

I Projective: at most 2(n − 1) arcs to consider – O(n)

I Approaches:
I Pseudo-projective parsing [Nivre and Nilsson 2005]
I Extended arc transitions [Attardi 2006]
I List-based algorithms [Covington 2001, Nivre 2007]
I Online reordering [Nivre 2009, Nivre et al. 2009]:

Graph-Based and Transition-Based Dependency Parsing 35(44)

Non-Projective Parsing

Non-Projective Parsing

I So far only projective parsing models
I Non-projective parsing harder even with greedy inference

I Non-projective: n(n − 1) arcs to consider – O(n2)

I Projective: at most 2(n − 1) arcs to consider – O(n)

I Approaches:
I Pseudo-projective parsing [Nivre and Nilsson 2005]
I Extended arc transitions [Attardi 2006]
I List-based algorithms [Covington 2001, Nivre 2007]
I Online reordering [Nivre 2009, Nivre et al. 2009]:

Graph-Based and Transition-Based Dependency Parsing 35(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 36(44)

Non-Projective Parsing

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,A) ⇒ (S |j , i |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:
1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees
I T is projective with respect to <p but not (necessarily) <

Graph-Based and Transition-Based Dependency Parsing 37(44)

Non-Projective Parsing

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,A) ⇒ (S |j , i |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:
1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees
I T is projective with respect to <p but not (necessarily) <

Graph-Based and Transition-Based Dependency Parsing 37(44)

Non-Projective Parsing

Example Transition Sequence

[]S [ROOT, A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT]S [A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, A]S [hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, A, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, is]S [scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, is, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, the]S [issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, the, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, on]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled, today]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled, .]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Example Transition Sequence

[ROOT]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

root

det aux

nsubj

prep

pobj

det

tmod

p

Graph-Based and Transition-Based Dependency Parsing 38(44)

Non-Projective Parsing

Analysis

I Correctness:
I Sound and complete for the class of non-projective trees

I Complexity for greedy or beam search parsing:
I Quadratic running time in the worst case
I Linear running time in the average case

I Works well with beam search and structured prediction

Czech German
LAS UAS LAS UAS

Projective 80.8 86.3 86.2 88.5
Reordering 83.9 89.1 88.7 90.9

[Bohnet and Nivre 2012]

Graph-Based and Transition-Based Dependency Parsing 39(44)

Joint Morphological and Syntactic Analysis

Morphology and Syntax

I Morphological analysis in dependency parsing:
I Crucially assumed as input, not predicted by the parser
I Pipeline approach may lead to error propagation
I Most PCFG-based parsers at least predict their own tags

I Recent interest in joint models for morphology and syntax:
I Graph-based [McDonald 2006, Lee et al. 2011, Li et al. 2011]
I Transition-based [Hatori et al. 2011, Bohnet and Nivre 2012]

I Can improve both morphology and syntax

Graph-Based and Transition-Based Dependency Parsing 40(44)

Joint Morphological and Syntactic Analysis

Transition System for Morphology and Syntax

Configuration: (S ,B,M,A) [M = Morphology]

Initial: ([], [0, 1, . . . , n], { }, { })

Terminal: ([0], [],M,A)

Shift(p): (S , i |B,M,A) ⇒ (S |i ,B,M ∪ {(i ,m)},A)

Right-Arc(k): (S |i |j ,B,M,A) ⇒ (S |i ,B,M,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,M,A) ⇒ (S |j ,B,M,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,M,A) ⇒ (S |j , i |B,M,A) 0 < i < j

I Transition-based parsing with three interleaved processes:
I Assign morphology when words are shifted onto the stack
I Optionally sort words into projective order <p

I Build dependency tree T by connecting adjacent subtrees

Graph-Based and Transition-Based Dependency Parsing 41(44)

Joint Morphological and Syntactic Analysis

Transition System for Morphology and Syntax

Configuration: (S ,B,M,A) [M = Morphology]

Initial: ([], [0, 1, . . . , n], { }, { })

Terminal: ([0], [],M,A)

Shift(p): (S , i |B,M,A) ⇒ (S |i ,B,M ∪ {(i ,m)},A)

Right-Arc(k): (S |i |j ,B,M,A) ⇒ (S |i ,B,M,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,M,A) ⇒ (S |j ,B,M,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,M,A) ⇒ (S |j , i |B,M,A) 0 < i < j

I Transition-based parsing with three interleaved processes:
I Assign morphology when words are shifted onto the stack
I Optionally sort words into projective order <p

I Build dependency tree T by connecting adjacent subtrees

Graph-Based and Transition-Based Dependency Parsing 41(44)

Joint Morphological and Syntactic Analysis

Parsing Richly Inflected Languages

I Full morphological analysis: lemma + postag + features
I Beam search and structured predication
I Parser selects from k best tags + features
I Rule-based morphology provides additional features

I Evaluation metrics:
I PM = morphology (postag + features)
I LAS = labeled attachment score

Czech Finnish German Hungarian Russian
PM LAS PM LAS PM LAS PM LAS PM LAS

Pipeline 93.0 83.1 88.8 79.9 89.1 91.8 96.1 88.4 92.6 87.4
Joint 94.4 83.5 91.6 82.5 91.2 92.1 97.4 89.1 95.1 88.0

[Bohnet et al. 2013]

Graph-Based and Transition-Based Dependency Parsing 42(44)

Conclusion and Outlook

Where do we stand?

2008

2014

Graph-based Parsers
Global Inference
Global Learning

Local Feature Scope

Transition-based Parsers
Local Inference
Local Learnng

Global Feature Scope

Graph-based Parsers
Global Inference
Global Learnng

Global Feature Scope

Transition-based Parsers
Global Inference
Global Learnng

Global Feature Scope

beam search
perceptron
dynamic oracles
dynamic programming
more features
etc.

higher-order chart parsing
pruning
ILP
dual decomp
mildly non-projective
etc.

LAS: 83.8 v. 83.6
[McDonald & Nivre 2007]

LAS: 85.8 v. 85.5
[Zhang et al. 2013]

Evaluated on overlapping 9 languages in studies
Graph-Based and Transition-Based Dependency Parsing 43(44)

Coming Up Next

1. Introduction to dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Multiword expressions in dependency parsing

4. Practical lab session (MaltParser)

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

References and Further Reading

I Giuseppe Attardi. 2006. Experiments with a multilanguage non-projective
dependency parser. In Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 166–170.

I Shane Bergsma and Colin Cherry. 2010. Fast and accurate arc filtering for
dependency parsing. In Proceedings of the 23rd International Conference on
Computational Linguistics (COLING), pages 53–61.

I Manuel Bodirsky, Marco Kuhlmann, and Mathias Möhl. 2005. Well-nested
drawings as models of syntactic structure. In Tenth Conference on Formal
Grammar and Ninth Meeting on Mathematics of Language.

I Bernd Bohnet and Jonas Kuhn. 2012. The best of both worlds – a graph-based
completion model for transition-based parsers. In Proceedings of the 13th
Conference of the European Chpater of the Association for Computational
Linguistics (EACL), pages 77–87.

I Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint
part-of-speech tagging and labeled non-projective dependency parsing. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages
1455–1465.

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

I Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and
Jan Hajič. 2013. Joint morphological and syntactic analysis for richly inflected
languages. Transactions of the Association for Computational Linguistics,
1:415–428.

I Bernd Bohnet. 2010. Very high accuracy and fast dependency parsing is not a
contradiction. In Proceedings of the 23rd International Conference on
Computational Linguistics, pages 89–97. Association for Computational Linguistics.

I Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the Tenth Conference on Computational
Natural Language Learning, pages 149–164.

I Xavier Carreras. 2007. Experiments with a higher-order projective dependency
parser. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 957–961.

I Y. J. Chu and T. J. Liu. 1965. On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400.

I Michael Collins and Brian Roark. 2004. Incremental parsing with the perceptron
algorithm. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pages 112–119.

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

I Michael Collins. 2002. Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1–8.

I Michael A. Covington. 2001. A fundamental algorithm for dependency parsing. In
Proceedings of the 39th Annual ACM Southeast Conference, pages 95–102.

I J. Edmonds. 1967. Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240.

I Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th International Conference on Computational
Linguistics (COLING), pages 340–345.

I Keith Hall and Václav Novák. 2005. Corrective modeling for non-projective
dependency parsing. In Proceedings of the Ninth International Workshop on
Parsing Technology, pages 42–52. Association for Computational Linguistics.

I Keith Hall. 2007. K-best spanning tree parsing. In Proceedings of the Association
for Computational Linguistics (ACL).

I Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2011.
Incremental joint pos tagging and dependency parsing in chinese. In Proceedings of

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

5th International Joint Conference on Natural Language Processing (IJCNLP),
pages 1216–1224.

I He He, Hal Daumé III, and Jason Eisner. 2013. Dynamic feature selection for
dependency parsing. In Proceedings of Empirical Methods in Natural Language
Processing (EMNLP).

I Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with
inexact search. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 142–151.

I Richard Johansson and Pierre Nugues. 2006. Investigating multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural
Language Learning (CoNLL), pages 206–210.

I Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1–11. Association for Computational Linguistics.

I Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition for parsing with non-projective head automata.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1288–1298. Association for Computational Linguistics.

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

I Sandra Kübler, Joakim Nivre, and Ryan McDonald. 2009. Dependency Parsing.
Morgan & Claypool Publishers.

I John Lee, Jason Naradowsky, and David A. Smith. 2011. A discriminative model
for joint morphological disambiguation and dependency parsing. In Proceedings of
the 29th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 885–894.

I Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and Haizhou
Li. 2011. Joint models for chinese pos tagging and dependency parsing. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1180–1191.

I Xuezhe Ma and Hai Zhao. 2012. Fourth-order dependency parsing. In Proceedings
of the Conference on Computational Linguistics (COLING), pages 785–796.

I André FT Martins, Noah A Smith, and Eric P Xing. 2009. Concise integer linear
programming formulations for dependency parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1,
pages 342–350. Association for Computational Linguistics.

I Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven
dependency parsing models. In Proceedings of the Join Conference on Empirical

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

Methods in Natural Language Processing and the Conference on Computational
Natural Language Learning (EMNLP-CoNLL).

I Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate
dependency parsing algorithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
81–88.

I Ryan McDonald and Giorgio Satta. 2007. On the complexity of non-projective
data-driven dependency parsing. In Proceedings of the 10th International
Conference on Parsing Technologies (IWPT), pages 122–131.

I Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005.
Non-projective dependency parsing using spanning tree algorithms. In Proceedings
of the Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 523–530.

I Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilingual
dependency analysis with a two-stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL), pages
216–220.

I Ryan McDonald. 2006. Discriminative Training and Spanning Tree Algorithms for
Dependency Parsing. University of Pennsylvania. Ph.D. thesis, PhD Thesis.

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

I Tetsuji Nakagawa. 2007. Multilingual dependency parsing using global features. In
EMNLP-CoNLL, pages 952–956.

I Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 99–106.

I Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit, and Svetoslav Marinov.
2006. Labeled pseudo-projective dependency parsing with support vector machines.
In Proceedings of the Tenth Conference on Computational Natural Language
Learning (CoNLL), pages 221–225.

I Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009. An improved oracle for
dependency parsing with online reordering. In Proceedings of the 11th International
Conference on Parsing Technologies (IWPT’09), pages 73–76.

I Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In
Gertjan Van Noord, editor, Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pages 149–160.

I Joakim Nivre. 2004. Incrementality in deterministic dependency parsing. In Frank
Keller, Stephen Clark, Matthew Crocker, and Mark Steedman, editors, Proceedings

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

of the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together (ACL), pages 50–57.

I Joakim Nivre. 2007. Incremental non-projective dependency parsing. In
Proceedings of Human Language Technologies: The Annual Conference of the
North American Chapter of the Association for Computational Linguistics
(NAACL-HLT), pages 396–403.

I Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In
Proceedings of the 47th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 351–359.

I Emily Pitler, Sampath Kannan, and Mitchell Marcus. 2012. Dynamic programming
for higher order parsing of gap-minding trees. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 478–488. Association for
Computational Linguistics.

I Emily Pitler, Sampath Kannan, and Mitchell Marcus. 2013. Finding optimal
1-endpoint-crossing trees. Transactions of the Association for Computational
Linguistics (TACL).

I Sebastian Riedel and James Clarke. 2006. Incremental integer linear programming
for non-projective dependency parsing. In Proceedings of the 2006 Conference on

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

Empirical Methods in Natural Language Processing, pages 129–137. Association
for Computational Linguistics.

I Alexander M Rush and Slav Petrov. 2012. Vine pruning for efficient multi-pass
dependency parsing. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 498–507. Association for Computational Linguistics.

I David A Smith and Jason Eisner. 2008. Dependency parsing by belief propagation.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 145–156. Association for Computational Linguistics.

I Katerina Veselá, Havelka Jiri, and Eva Hajicová. 2004. Condition of projectivity in
the underlying dependency structures. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING), pages 289–295.

I Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and
combining graph-based and transition-based dependency parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 562–571.

I Hao Zhang and Ryan McDonald. 2012. Generalized higher-order dependency
parsing with cube pruning. In Proceedings of the 2012 Joint Conference on

Graph-Based and Transition-Based Dependency Parsing 44(44)

References and Further Reading

Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 320–331. Association for Computational Linguistics.

I Yue Zhang and Joakim Nivre. 2011. Transition-based parsing with rich non-local
features. In Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 188–193.

I Yue Zhang and Joakim Nivre. 2012. Analyzing the effect of global learning and
beam-search on transition-based dependency parsing. In Proceedings of COLING
2012: Posters, pages 1391–1400.

I Liang Zhang, Huang, Kai Zhao, and Ryan McDonald. 2013. Online learning for
inexact hypergraph search. In Proceedings of Empirical Methods in Natural
Language Processing.

Graph-Based and Transition-Based Dependency Parsing 44(44)

	Introduction
	Graph-Based Parsing
	Projective Parsing
	Non-Projective Parsing
	Transition-Based Dependency Parsing
	Beam Search and Structured Prediction
	Non-Projective Parsing
	Joint Morphological and Syntactic Analysis
	Conclusion and Outlook
	References and Further Reading

