
PML-TQ and Multiword Expressions

(Jiří Mírovský and Pavel Straňák, PARSEME training school lab session, January 22nd, 2015)

Introduction

Find all Predicates

t-node
[functor = "PRED"];

use button count (or output filter >> count() in the web client)

Predicates with an Actor

t-node
[functor = "PRED",
 t-node $t := [functor = "ACT"]];

Distribution of functors below a Predicate

t-node
[functor = "PRED",
 t-node $t := []];
 >> for $t.functor give $1,count() sort by $2 desc

Notice that there are CONJ and DISJ in the result.

Find them:
t-node
[functor = "PRED",
 t-node $t :=
 [functor ~ "(CONJ|DISJ)"]];

We need echild – effective parentage

t-node
[functor = "PRED",
 echild t-node $t := []];
 >> for $t.functor give $1,count() sort by $2 desc

Notice the big difference in the distributions.

Predicate without an Actor
t-node
[functor = "PRED",
 0x echild t-node
 [functor = "ACT"]];

Lists and counts of inner participants of verbs

t-node $p :=
[gram/sempos = "v",
 echild t-node $c :=
 [functor in {"ACT", "PAT", "ADDR", "EFF", "ORIG"}]];
 >> for $p.id,$c.functor give $1,$2
 >> give distinct $1,concat($2, ' ' over $1 sort by $2)
 >> for $2 give $1,count() sort by $2 desc

CPHR, DPHR, is_name_of_person

Find all CPHRs

t-node
 [functor = "CPHR"]

+ button count
+ >> count()

But in how many trees?

More options:

t-root
[1+x descendant t-node
 [functor = "CPHR"]];
>> count()

or

t-root $r :=
[descendant t-node
 [functor = "CPHR"]];
 >> give distinct $r.id
 >> give count()

DPHR that is not a leaf

t-node
[functor = "DPHR", sons() != 0];

DPHR not dependant on a verb

Several options, e.g.:

t-node
[gram/sempos != "v",
 echild t-node
 [functor = "DPHR"]];

or

t-node
[functor = "DPHR",
 0x eparent t-node
 [gram/sempos = "v"]];

... if you want to list the cases – possible only with the first option:

t-node $t :=
[gram/sempos != "v",
 echild t-node $s :=
 [functor = "DPHR"]];
 >> for $t.t_lemma,$s.t_lemma give $1,$2,count() sort by $3 desc

Give a list of a governing word + DPHR, and the sentences

t-root
[descendant t-node $p :=
 [echild t-node $c :=
 [functor = "DPHR"]],
 atree.rf a-root $r :=
 [+descendant a-node $a := []]];
 >> for $r.id,$p.t_lemma,$c.t_lemma,$a.m/form,$a.ord give $1,$2,$3,$4,$5
 >> give distinct $2,$3,concat($4, ' ' over $1 sort by $5)

MWE

Find all t-nodes in all mwes

t-root
[member mwes
 [tnode.rfs t-node []]];

+ count their types

t-root
[member mwes $m :=
 [tnode.rfs t-node []]];
>> for $m.type give $1, count()

But it counts number of t-nodes in the respective types of mwes.

If we only want counts of mwes, this is enough:

t-root
[member mwes $m :=
 []];
>> for $m.type give $1, count()

Find all t-nodes in mwes of type location

t-root
[member mwes
 [type = "location",
 tnode.rfs t-node []]];

Find the first node in the depth-first-order in mwes of type location

t-root
[member mwes
 [type = "location",
 0x tnode.rfs t-node
 [depth-first-precedes $n3],
 tnode.rfs t-node $n3 := []]];

Counts of mwes in individual trees

t-root $r :=
[member mwes []];
 >> for $r.id give count()

the same should work for $r in the output filter – but a different order of results.

+ >>max()
+ >>avg() - but notice that trees without mwes are not counted

in how many trees are given numbers of mwes:

+ >> for $1 give $1,count() sort by $2 desc

(it is the same for $r.id and $r)

if we do not want to see rare cases (with number of occurences less than 5)
+ >> filter $2 >= 5

Give a list of all mwes (as they appear in the sentence)

t-root
[member mwes $m :=
 [tnode.rfs t-node
 [a/lex.rf|a/aux.rf a-node $a := []]]];
 >> give distinct concat($a.m/form, ' ' over $m sort by $a.ord)

Find all DPHRs that are not parts of mwe – does not work because of bug in 0x member

t-node $n :=
[functor = "DPHR",
 same-tree-as t-root
 [0x member mwes
 [tnode.rfs $n]]];

But works this way: instead of saying that in the given t-root, there is no member mwes from
which a link would go to the given t-node, we can say that in the tree is no t-root in which
there is a mwe from which a link goes to the given t-node – and this is inrepreted correctly.

t-node $n3 :=
[functor = "DPHR",
 0x same-tree-as t-root
 [member mwes
 [tnode.rfs $n3]]];

Find errors in is_name_of_person vs. mwe type person

Find nodes with is_name_of_person that are not a part of mwe of type person:

t-node $n3 :=
[is_name_of_person = "1",
 0x same-tree-as t-root
 [member mwes
 [type = "person", tnode.rfs $n3]]];

Finds e.g. companies that have the owner's name in their name.

The other way (t-nodes that are part of mwe of type person but do not have is_name_of_person:

t-root
[member mwes
 [type = "person", tnode.rfs t-node
 [!is_name_of_person = "1"]]];

Finds e.g. Ing. Vladimír Duda

Distribution of types of mwe along with counts and percentages:

t-root
[member mwes $m :=
 [tnode.rfs t-node $t := []]];
 >> for $m.id,$m.type give $2,count()
 >> for $1 give $1,count(),sum($2),min($2),max($2),round(avg($2),2)
 >> give $1,$2,round(ratio($2 over all) * 100,2),round(ratio($3 over all) * 100,2),$4,$5,$6
 >> give $1 & " … " & $2 & " mwe (" & $3 & "% of all mwes, " & $4 & "% of all mwe t-nodes)
… min. nodes " & $5 & ", max. nodes " & $6 & ", aver. nodes " & $7 sort by $1

	PML-TQ and Multiword Expressions
	Introduction
	CPHR, DPHR, is_name_of_person
	MWE

