Bayesian Word Sense Discrimination

Jenine Turner and Eugene Charniak

{jenine|ec}@cs.brown.edu

Brown University

Word Sense Disambiguation

Determine the correct meaning of an ambiguous word (such as *bank*) given

- The word's context
- A set of possible meanings for the word
- Labeled training data

Word Sense Disambiguation

Determine the correct meaning of an ambiguous word (such as *bank*) given

- The word's context
- A set of possible meanings for the word
- Labeled training data

Problem

Obtaining labeled training data is expensive

Word Sense Disambiguation

Determine the correct meaning of an ambiguous word (such as *bank*) given

- The word's context
- A set of possible meanings for the word
- Labeled training data

Problem

Obtaining labeled training data is expensive Solution?

Unsupervised learning

Word Sense Discrimination

In Word Sense **Discrimination** (unsupervised) you are still given

- The word's context
- But you are not given
 - A set of possible meanings for the word
 - Labeled training data

In Word Sense **Discrimination** (unsupervised) you are still given

- The word's context
- But you are not given
 - A set of possible meanings for the word
 - Labeled training data

Two types of unsupervised Word Sense Discrimination

- Data can include other outside labeled information
- Only data is from local context

Ambiguity

Wordnet lists 30 senses for the noun "line"

- A formation of people or things one behind another
- Text consisting of a row of words written across a page or computer screen
- Something (as a cord or rope) that is long and thin and flexible

Ambiguity

Some distinctions are more reasonable than others

- A formation of people or things one behind another
 - The line stretched clear around the corner
- A formation of people or things one beside another
 - The cast stood in line for the curtain call

Why Word Sense Disambiguation?

Necessary for correct semantic interpretation

- Applications of sense disambiguation
 - Machine Translation
 - Question Answering
 - Information Retrieval
 - Language Modeling

Previous Work in Word Sense Discrimination

- Contexts drawn from Roget's Thesaurus (Yarowsky, 1992)
- Bootstrapping from manually chosen seed collocations (Yarowsky, 1995)
- Choosing candidate seeds automatically (Eisner and Karakos, 2005)
- Expectation Maximization (EM) on context features (Schutze, 1998)
- Clustering similar contexts (Pedersen and Bruce, 1997),
- Clustering different nouns (Pantel and Lin 2002)

Previous methods

Some downsides

- EM prefers similar-sized groups
- Most methods need to be given the number of groups or a cap
- Some of the "unsupervised" methods need outside information

Our approach

We use a Bayesian generative model for unsupervised learning

Finite model: number of senses given

Infinite model: number of senses unknown

Our approach

We use a Bayesian generative model for unsupervised learning

- Finite model: number of senses given
- Infinite model: number of senses unknown

Advantages to this approach

- Model can handle data with senses of varying frequency
- The infinite model does not constrain the number of senses

Three different bag-of-words feature sets

Counts of context words for the ambiguous word

All nearby words (1)

She made her way, still seemingly dancing to the tune, the huge crocodile - skin handbag on her arm swaying heavily in time, to the door down to the saloon.

Words from a "stripped" version of the full parse (2)

she made her way still seemingly dancing tune huge crocodile skin handbag her arm swaying heavily time door down saloon

The words from (2) with closed-class words taken out

made way still seemingly dancing tune huge crocodile skin handbag arm swaying heavily time door down saloon

• A probability distribution over possible senses (w)

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)
- (The probability distributions are chosen from Dirichlet distributions with hyperparameters α and β)

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)
- (The probability distributions are chosen from Dirichlet distributions with hyperparameters α and β)

The generative model describes how the observed data (i.e. the context words) are generated:

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)
- (The probability distributions are chosen from Dirichlet distributions with hyperparameters α and β)

The generative model describes how the observed data (i.e. the context words) are generated:

For each instance of the ambiguous word choose a sense z from w.

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)
- (The probability distributions are chosen from Dirichlet distributions with hyperparameters α and β)

The generative model describes how the observed data (i.e. the context words) are generated:

For each instance of the ambiguous word choose a sense z from w.

From sense z, generate m context words from θ_z

The Infinite Model

- A probability distribution over possible senses (w)
- For each possible sense z, a probability distribution over context words (θ_z)
- (*w* is chosen from Dirichlet process, θ_z from Dirichlet distribution with hyperparameters α and β)

The generative model describes how the observed data (i.e. the context words) are generated:

- For each instance of the ambiguous word choose its sense z from w or choose a new sense entirely
- From sense z, choose m context words from θ_z

What are we aiming for?

Goal is to choose a sense for each ambiguous word that maximizes the joint probability $p(s_i...s_n|x, \alpha, \beta)$

What are we aiming for?

- Goal is to choose a sense for each ambiguous word that maximizes the joint probability $p(s_i...s_n|x, \alpha, \beta)$
- We cannot compute this directly, so we sample using Gibbs Sampling

Let's say our ambiguous word is *bank*

Let's say our ambiguous word is *bank*

First, assign every instance of bank to the same sense

Let's say our ambiguous word is *bank*

- First, assign every instance of bank to the same sense
- For some number of iterations:
 - For each instance of *bank*, remove it from its sense and choose a new sense

Let's say our ambiguous word is *bank*

- First, assign every instance of bank to the same sense
- For some number of iterations:
 - For each instance of bank, remove it from its sense and choose a new sense

Over time, the sense assignments should converge to a sample from the joint distribution

Let's say our ambiguous word is *bank*

- First, assign every instance of bank to the same sense
- For some number of iterations:
 - For each instance of bank, remove it from its sense and choose a new sense

Over time, the sense assignments should converge to a sample from the joint distribution

But how do we know which new sense to choose?

Sampling: Picking a new sense assignment

Probability of any single sense assignment is a combination of two probabilities

Sampling: Picking a new sense assignment

- Probability of any single sense assignment is a combination of two probabilities
 - The probability of the sense, dependent on:
 All the other sense assignments

 $\mid \alpha$

Sampling: Picking a new sense assignment

- Probability of any single sense assignment is a combination of two probabilities
 - The probability of the sense, dependent on:
 - All the other sense assignments

 $\square \alpha$

- The probability of each context word, dependent on:
 - The other sense assignments
 - All the other context words

 β

Sampling: Probability of a sense

In both the finite and infinite models

- Probability of a sense is proportional to the current number of words with that sense assigned
- In the infinite model

A new sense is chosen with a probability dependent on α

Sampling: Probability of the context words

Let's say we have a context word *river*

Sampling: Probability of the context words

Let's say we have a context word *river*

The probability of *river* is dependent on
The sense assignment chosen for this *bank*The other sense assignments
The other context words

Sampling: Probability of the context words

Let's say we have a context word *river*

- The probability of *river* is dependent on
 The sense assignment chosen for this *bank*The other sense assignments
 The other context words
- So the probability of *river* in the given sense assignment of this instance of *bank* is high if *river* occurs frequently in that sense compared to the other senses
- $\blacksquare\beta$ governs how sensitive the model is to noise

Find a distribution of sense assignments over all instances of *bank*

Find a distribution of sense assignments over all instances of *bank*

Gibbs sampling

Find a distribution of sense assignments over all instances of *bank*

- Gibbs sampling
- Repeatedly choose a new group for each instance of *bank*

Find a distribution of sense assignments over all instances of *bank*

- Gibbs sampling
- Repeatedly choose a new group for each instance of *bank*
- Converges to a sample from the joint distribution

Evaluation

Difficult to evaluate, due to lack of manually tagged training data and lack of standardization

- Pseudo-ambiguous words
- Senseval
- Line corpus

Evaluation

Evaluation metric

- Overall accuracy
- Baseline: majority sense

Evaluation

Evaluation metric

- Overall accuracy
- Baseline: majority sense

Different methods in previous work

- Supervised: using sense-labeled training data
- Unsupervised: no sense-labeled training data
- Completely Unsupervised: no labeled data of any sort

14 nouns from Senseval1

Two sets of senses for each word

- The original set of senses
- A hand-chosen subset

14 nouns from Senseval1

Two sets of senses for each word

- The original set of senses
- A hand-chosen subset

Evaluation

- Experiments on both the finite and infinite versions
- Tried various values for α and β
- Accuracy score compared to majority score

Preliminary Results

The full set

- On both the finite and infinite versions, 8 words scored above baseline
- Infinite version tends to prefer 2 or 3 senses

Preliminary Results

The full set

- On both the finite and infinite versions, 8 words scored above baseline
- Infinite version tends to prefer 2 or 3 senses

The subset

Surprisingly, the smaller set does not show better performance

Continuing Work

Try different features

- Dependency information
- Co-occuring words
- Take distance into consideration
- Topic modeling
- Choose hyperparameters automatically