

CloudASR: A Web Platform for ASR
Ondrej Klejch

16.3.2015

Motivation

● Easier onboarding of new students
● Sharing of our knowledge
● Data acquisition

Motivation

● Many languages uncovered by Google ASR
– Google supports 39 languages

● We don't want to compete with Google (yet)
● We can compete on specific domains

Features

● Online and Batch ASR mode
● Multiple languages
● Annotation Interface
● Crowdsourcing
● Easy deployment
● Easy scalability

Batch vs. Online Mode

● Batch Mode:
– Record recording and send it to the server

– Receive n-best list

● Online Mode:
– Send chunks of the recording to the server

– Receive best path

Batch vs. Online Mode

Plátek, Ondřej, and Filip Jurčíček. "Integration of an On-line Kaldi Speech Recogniser to
the Alex Dialogue Systems Framework." In Text, Speech and Dialogue, pp. 603-610.
Springer International Publishing, 2014.

Architecture

● Built from smaller blocks:
– Master

– Worker

– API Frontend

● Blocks send messages

API Frontend

● Receives requests from clients
● Batch mode uses HTTP POST method
● Online mode uses Websockets

Master

● Receives heartbeats from workers
● Keeps track about running workers
● Distributes tasks to workers

Worker

● Built on top of Pykaldi
● Uses theano neural network for VAD

– VAD splits recordings into smaller parts

– We can handle very long recordings

Batch Mode Workflow

● Client sends wav to API Frontend

● API Frontend asks Master for Worker address

● API Frontend sends wav to Worker

● Worker processes the wav

● Worker returns nbest list hypotheses to API Frontend

● API Frontend sends response to Client

Online Mode Workflow

● Client sends chunk to API Frontend

● API Frontend asks Master for Worker address

● Repeat:

– API Frontend sends chunk to Worker

– Worker processes the chunk

– Worker returns best path hypothesis to API Frontend

– API Frontend sends response to Client

– API Frontend waits for next chunk

Deployment

Traditional approach:

– Install dependencies on each machine

– Start/stop applications manually

– Make sure that you use same libraries in DEV and PROD

Docker approach:

– A portable, lightweight application runtime and packaging tool.

– Create image with installed dependencies

– Use this image on each machine

– Guaranteed same environment in DEV and PROD

Traditional example

apt-get install -y python python-pip

pip install flask flask-socketio

cp -R . /opt/app

cd /opt/app

python run.py

Docker usage example

cloudasr/api/Dockerfile

FROM ubuntu:14.04

RUN apt-get install -y python python-pip

RUN pip install flask flask-socketio

ADD . /opt/app

WORKDIR /opt/app

CMD python run.py

Docker usage example

OPTS=--name api \

-p 8080:80 \

-e MASTER_ADDR=172.17.42.1:8001 \

-v cloudasr/api:/opt/app

docker build -t ufaldsg/cloud-asr-api cloudasr/api

docker run $OPTS -d ufaldsg/cloud-asr-api

docker stop

Cluster deployment

Traditional approach

– Setup every machine via ssh

– Run processes manually

– Handle failures manually

Cluster deployment

Mesos approach

– Mesos lets you program against your datacenter like it’s a
single pool of resources

– Scalability to 10,000s of nodes

– Mesos uses Docker

– Mesos handles scheduling
and failure recovery

api.json

{

 "id": “api“,

 "container": {

 "type": "DOCKER",

 "docker": { "image": “ufaldsg/cloud-asr-api“, }

 },

 "instances": 1, "cpus": 0.25, "mem": 256,

 "env": { "MASTER_ADDR": "tcp://cloudasr_master:31100" },

 }

curl -X POST -d @api.json marathon:8080/v2/apps

Marathon API example

api.json

{

 "id": “api“,

 "container": {

 "type": "DOCKER",

 "docker": { "image": “ufaldsg/cloud-asr-api“, }

 },

 "instances": 5, "cpus": 0.25, "mem": 256,

 "env": { "MASTER_ADDR": "tcp://cloudasr_master:31100" },

 }

curl -X PUT -d @api.json marathon:8080/v2/apps/api

Marathon API example

Future Work

● Own language model upload
● Language model adaptation
● Acoustic model adaptation

Thank you for your attention!
http://demo.cloudasr.com

https://github.com/UFAL-DSG/cloud-asr

http://demo.cloudasr.com/
https://github.com/UFAL-DSG/cloud-asr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

