Scaling Semantic Role Labeling and Semantic Parsing Across Languages

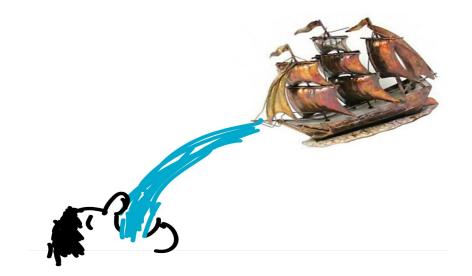
Roberto Navigli Sapienza University of Rome @RNavigli

Joint work with
Simone Conia
Andrea Di Fabio
Rexhina Blloshmi
Rocco Tripodi

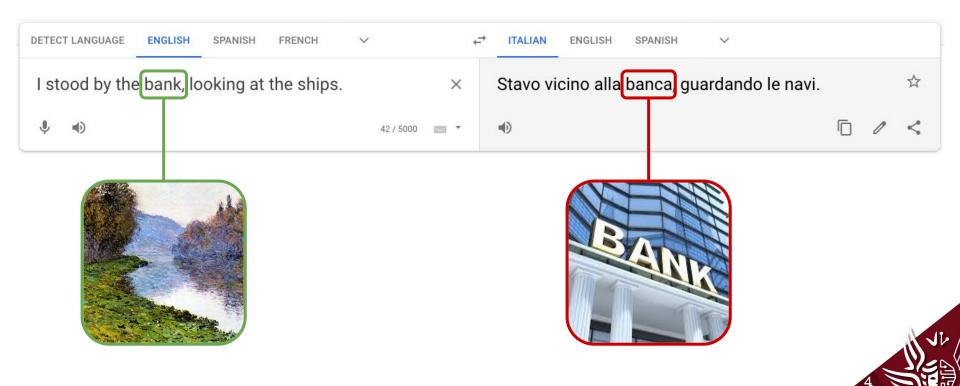
(with thanks for many slides/pictures)

Machine Translation «does not understand»

- EN Is it healthy to drink from a copper vessel?
- IT È salutare bere da una nave di rame?
- EN Is it healthy to drink from a copper ship?

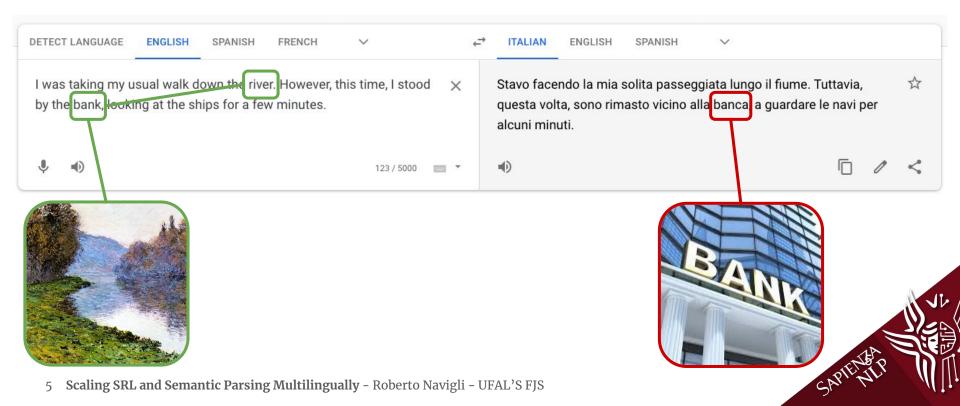


Machine Translation «does not understand»



Machine Translation «does not understand»

More context does NOT help...



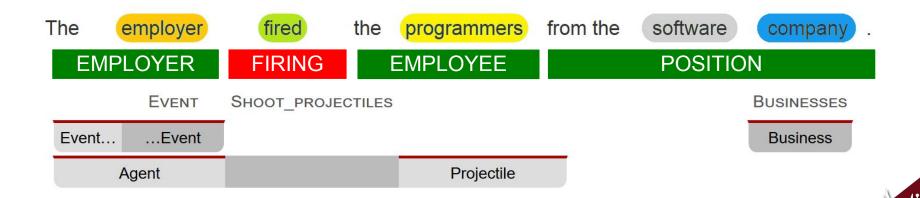
3 tasks to enable Natural Language Understanding

Word Sense Disambiguation

• Associating meaning with words occurring in context

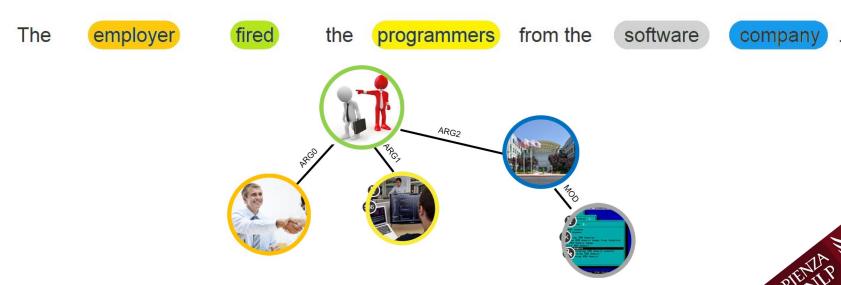
3 tasks to enable Natural Language Understanding

- Word Sense Disambiguation
- Semantic Role Labeling
 - «Shallow semantic parsing» which performs predicate-argument annotations



3 tasks to enable Natural Language Understanding

- Word Sense Disambiguation
- Semantic Role Labeling
- Semantic Parsing
 - o Transforming the text into a structured semantic representation



Issues in Natural Language Understanding

- Paucity of resources and training data in most languages
 - Resulting in a big performance gap
- Lack of shared semantics across languages
- We will address these issues in this talk
 - We will be focusing on SRL and Semantic Parsing, but we also have work on scaling WSD multilingually (MuLaN @ IJCAI 2020; XL-WSD @ AAAI 2021)

Issues in Natural Language Understanding

- Semantic Role Labeling
 - o Good but inconsistent results across languages.

OUR WORK

OUR WORK

Bridging the multilingual gap in SRL. (Conia and Navigli, COLING 2020)

- Semantic Parsing
 - Unimpressive performance across languages.

 $\qquad \qquad \Rightarrow \qquad \qquad \\$

Enabling cross-lingual Semantic Parsing.
(Blloshmi et al., EMNLP 2020)

- Semantic Role Labeling + Semantic Parsing
 - Language-specific inventories (e.g. PropBank).

OUR WORK

VerbAtlas: a novel semantic resource.
(Di Fabio et al., EMNLP 2019)

Semantic Role Labeling

An overview

An overview

SRL is the task of automatically addressing:

"Who did What to Whom, Where, When and How?"

(Gildea and Jurafsky, 2000; Màrquez et al., 2008)

An overview

The quick brown fox jumps over the lazy dog

An overview

The quick brown fox **jumps** over the lazy dog

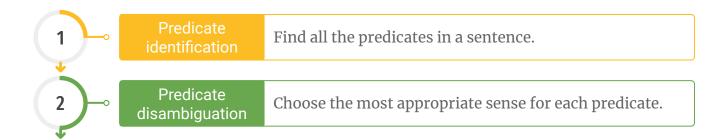
Find all the predicates in a sentence.

An overview

The quick brown fox

jumps
jump.03

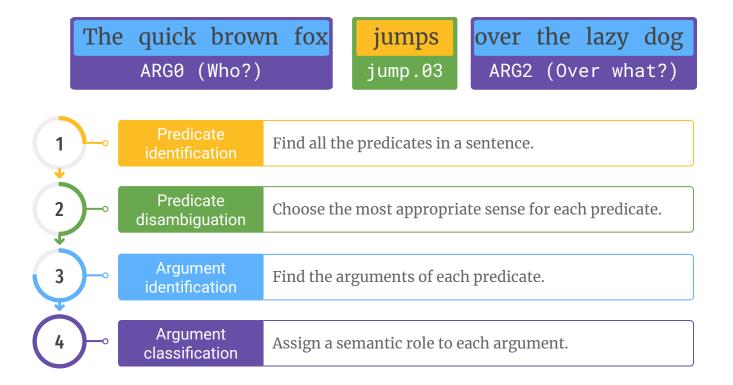
over the lazy dog



An overview

The quick brown fox over the lazy dog jumps jump.03 Find all the predicates in a sentence. Predicate Choose the most appropriate sense for each predicate. disambiguation Argument Find the arguments of each predicate. identification

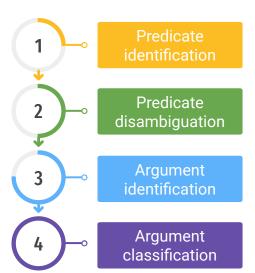
An overview



Syntax in Semantic Role Labeling Advantages and Disadvantages

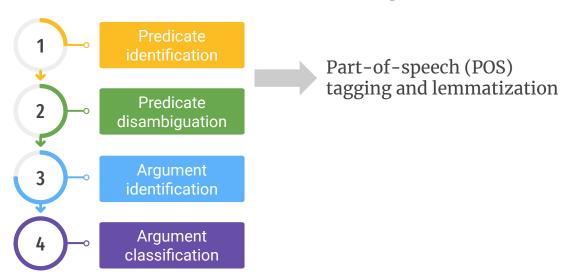
Advantages

ADVANTAGE: syntax can be a strong indicator for many subtasks



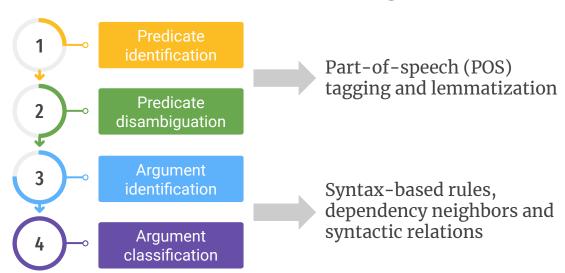
Advantages

ADVANTAGE: syntax can be a strong indicator for many subtasks

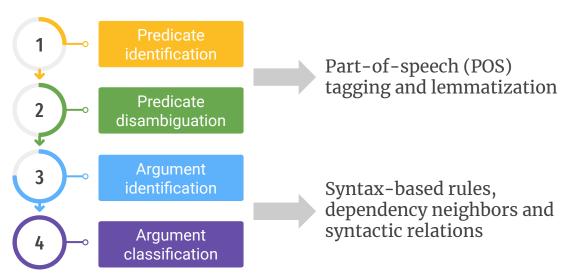


Advantages

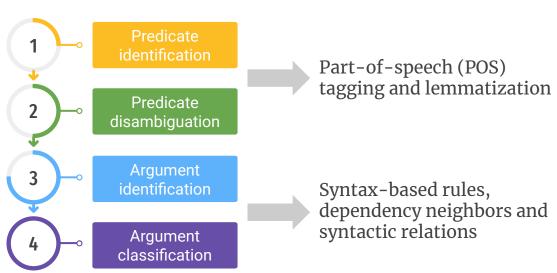
ADVANTAGE: syntax can be a strong indicator for many subtasks



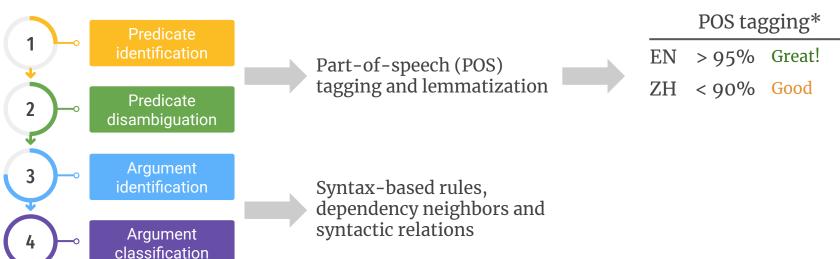
Disadvantages



Disadvantages



Disadvantages



^{*}Results of Stanza NLP in the CoNLL-2018 shared task on syntactic parsing.

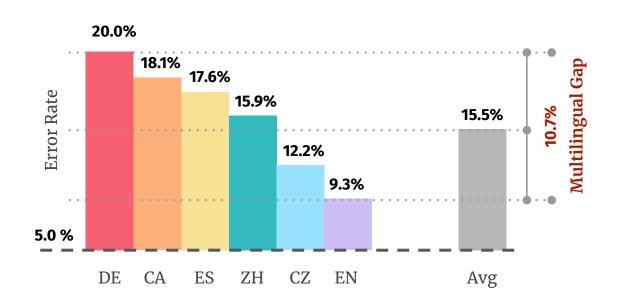
Disadvantages

^{*}Morphology-aware Label Attachment Score - Results of Stanza NLP in the CoNLL-2018 shared task on syntactic parsing.

The Multilingual Gap in Semantic Role Labeling

The Multilingual Gap in Semantic Role Labeling

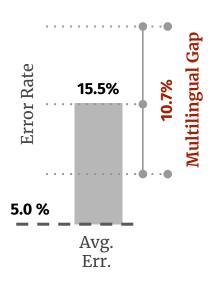
Recent progress has left a wide gap between high- and low-resource languages



Average error rates (% F1) of state-of-the-art SRL systems presented in 2019 and evaluated on CoNLL-2009.

Conia and Navigli, COLING 2020

Recent progress has left a wide gap between high- and low-resource languages

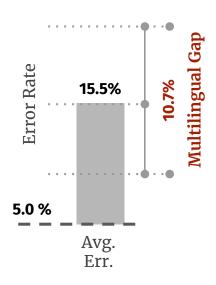


Q: Is it possible to significantly close this gap?

The Multilingual Gap

in Semantic Role Labeling

Recent progress has left a wide gap between high- and low-resource languages



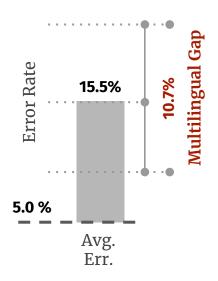
Q: Is it possible to significantly close this gap?

A: Yes!

The Multilingual Gap

in Semantic Role Labeling

Recent progress has left a wide gap between high- and low-resource languages



Q: Is it possible to significantly close this gap?

A: Yes! And we don't need syntax!

Conia and Navigli, COLING 2020

a Language-Agnostic Approach (Conia and Navigli, COLING 2020)

OBJECTIVE

Bridging the gap in multilingual Semantic Role Labeling

a Language-Agnostic Approach (Conia and Navigli, COLING 2020)

OBJECTIVE

Bridging the gap in multilingual Semantic Role Labeling

without relying on any language-specific features (lemma, POS, syntax)

a Language-Agnostic Approach (Conia and Navigli, COLING 2020)

OBJECTIVE

Bridging the gap in multilingual Semantic Role Labeling

without relying on any language-specific features (lemma, POS, syntax)

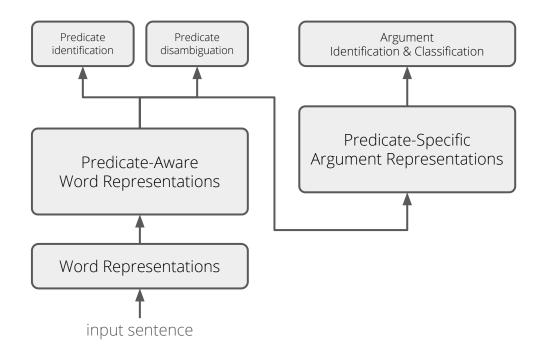
and setting a **strong and robust baseline** for future innovations

Method

A language-agnostic SRL model

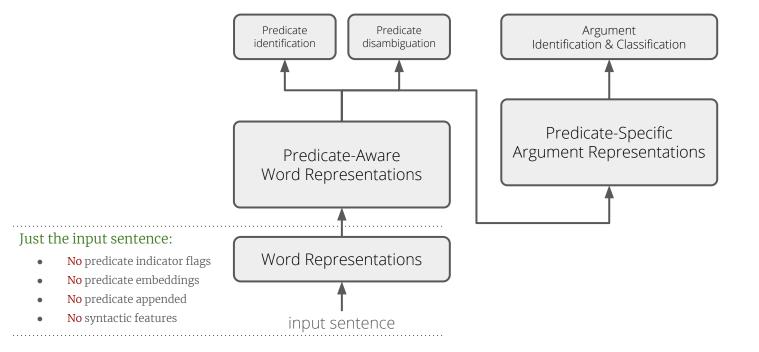
Model Architecture

Overview



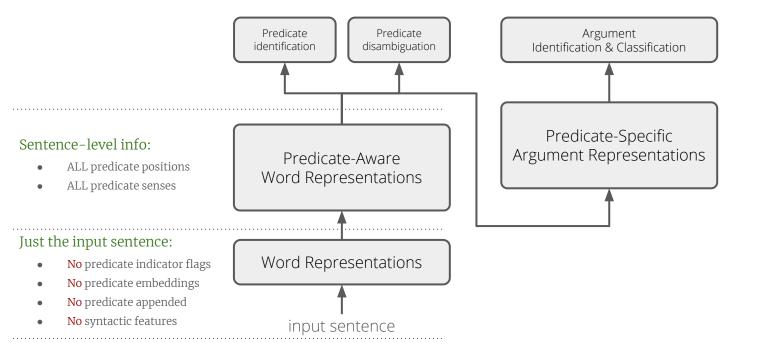
Model Architecture

Overview



Model Architecture

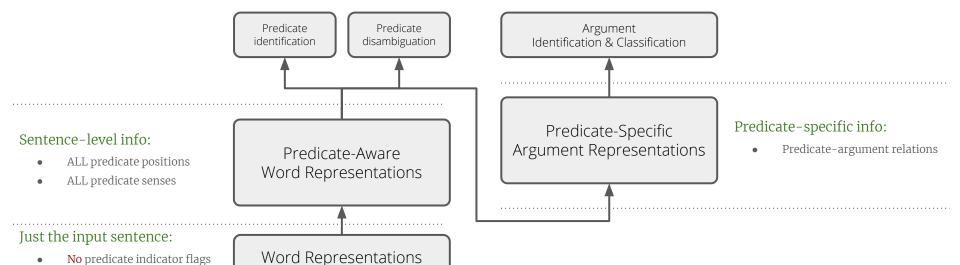
Overview



Model Architecture

Overview

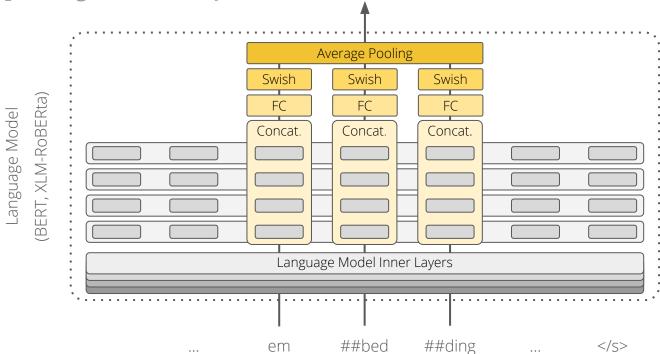
No predicate embeddings No predicate appended No syntactic features



input sentence

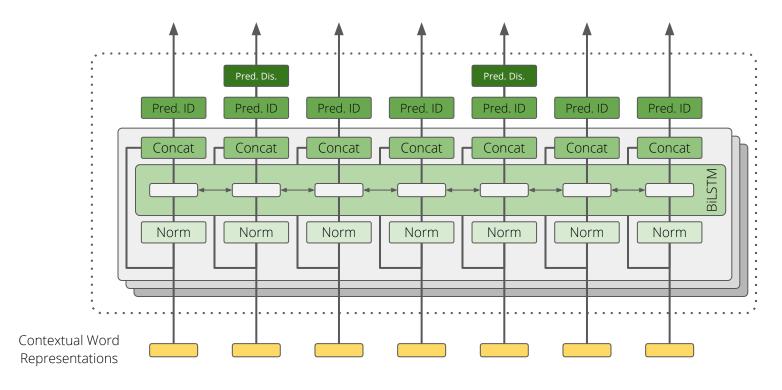
Contextualized Word Representations

Exploiting the inner layers



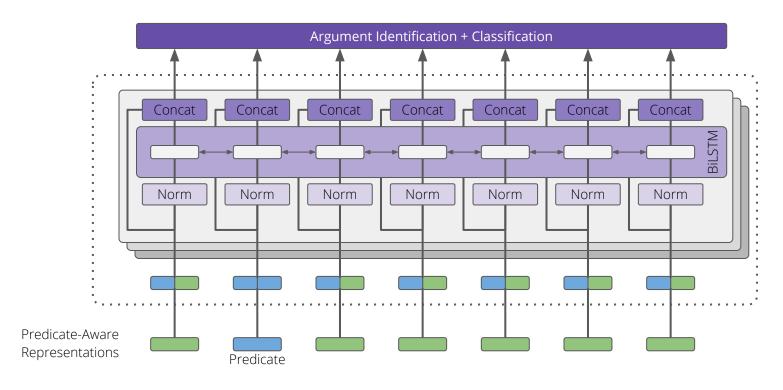
Predicate-Aware Word Representations

Recontextualizing the representations with respect to ALL the predicates



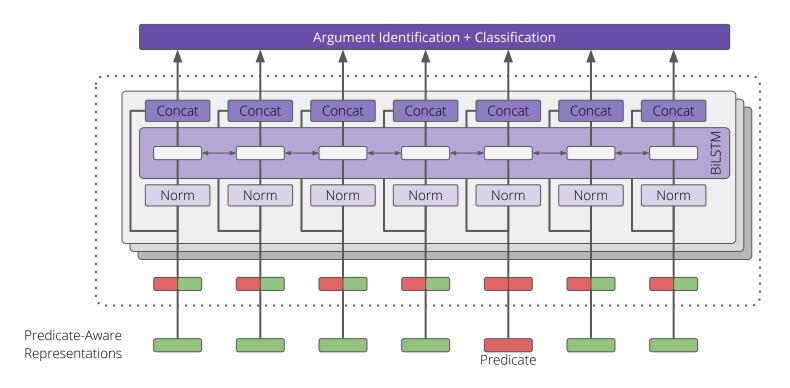
Predicate-Specific Argument Representations

Specializing word representations with respect to a SINGLE predicate



Predicate-Specific Argument Representations

Specializing word representations with respect to a SINGLE predicate



EvaluationDependency-based English SRL

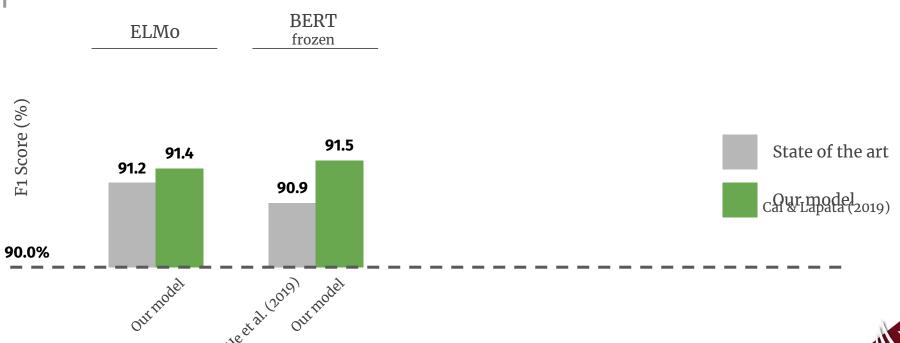
Dependency-based SRL on CoNLL-2009

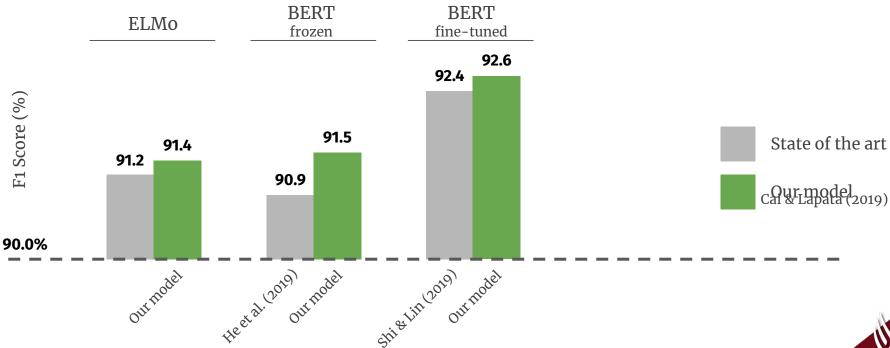
State of the art

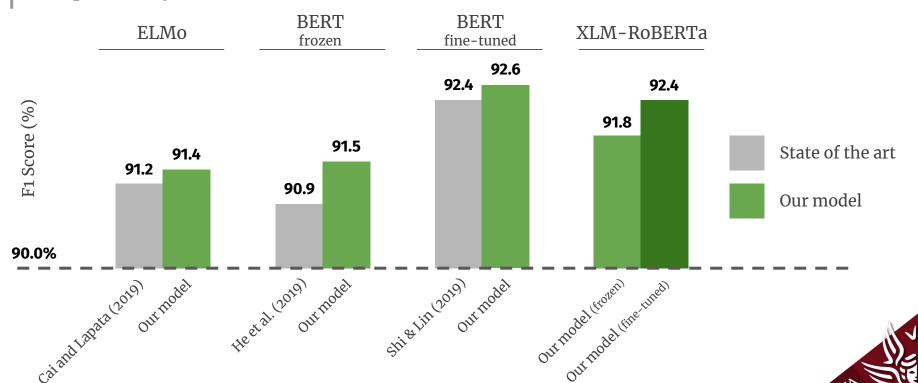
Our model

F1 Score (%)

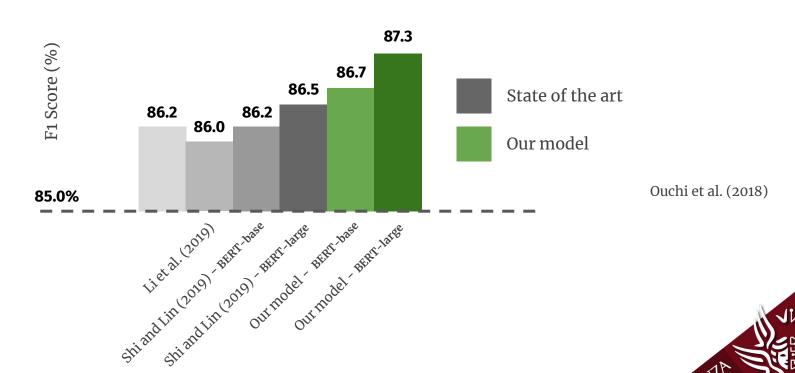
90.0%







Span-based SRL on CoNLL-2012



Evaluation Multilingual and Cross-Lingual SRL

Multilingual SRL

on CoNLL-2009

He et al. 2019
syntax-aware SOTA

Our model
BERT (frozen)

Our model
Cur model
BERT (fine-tuned)

Our model
XLM-R (fine-tuned)

F1 Score (%)

85.0 %

CA

CZ

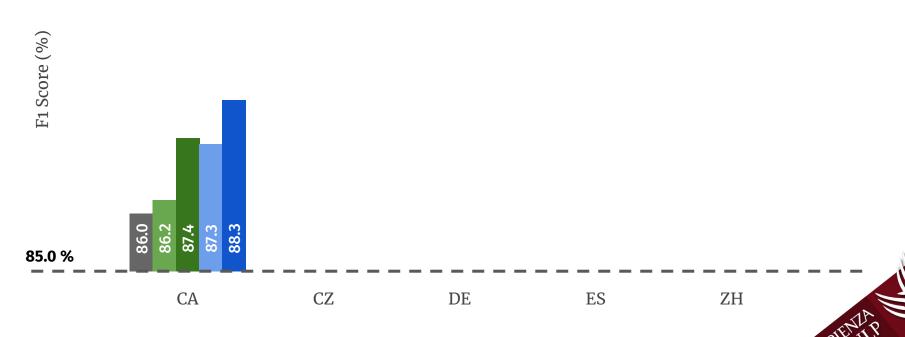
DE

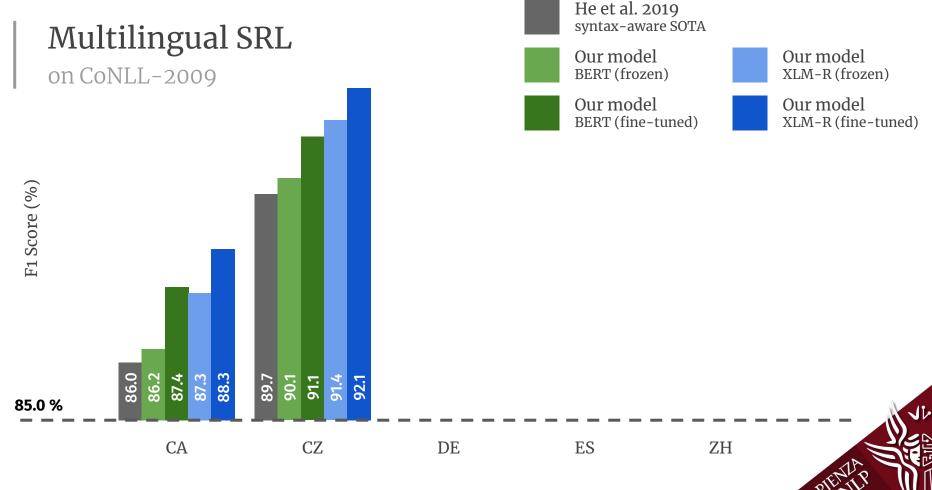
ES

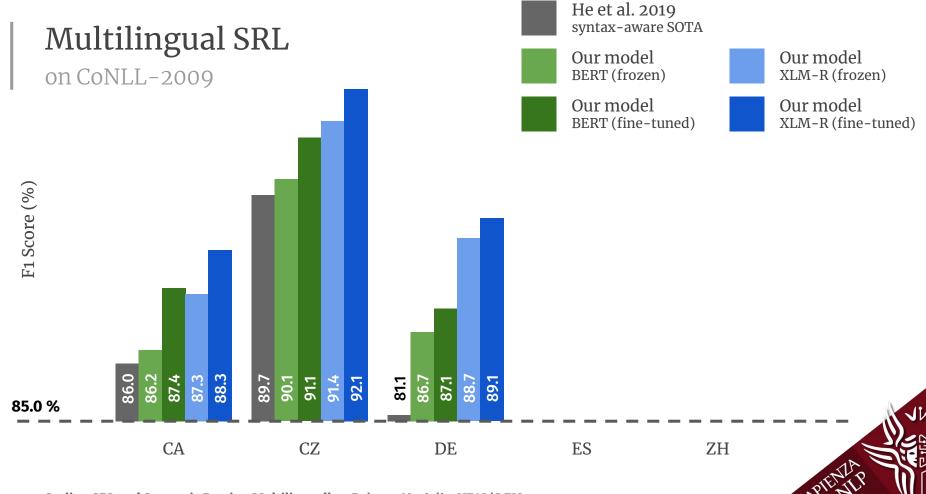
ZH

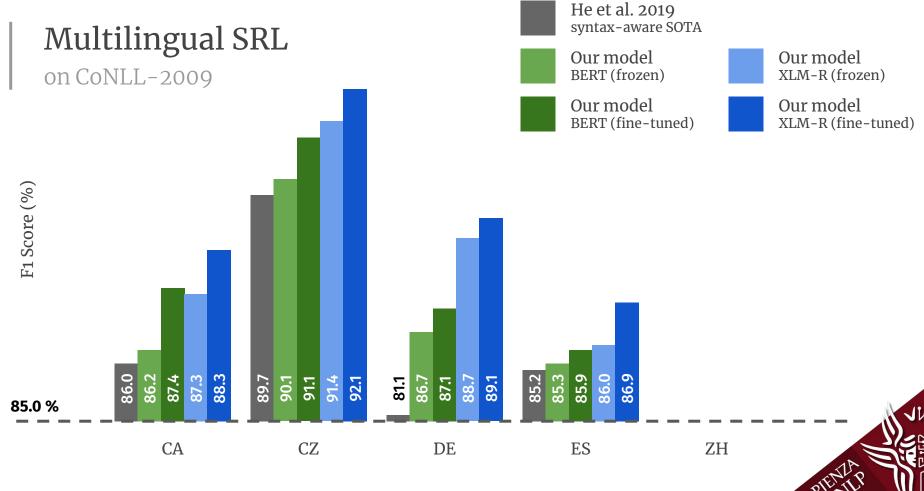
Multilingual SRL

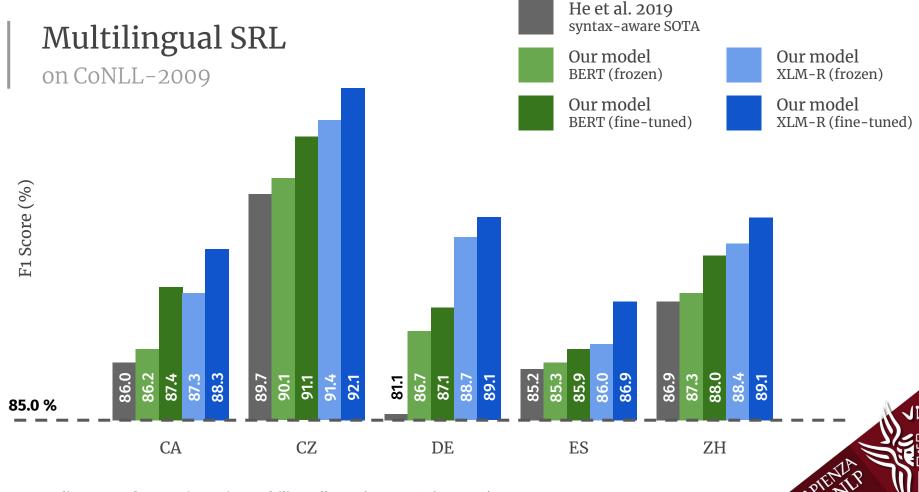
on CoNLL-2009









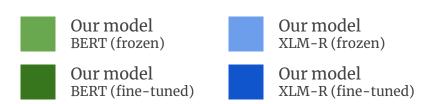


Zero-Shot Cross-Lingual SRL

on CoNLL-2009

Our approach shows promising results in zero-shot cross-lingual SRL*.

F1 Score (%)



75.0 %

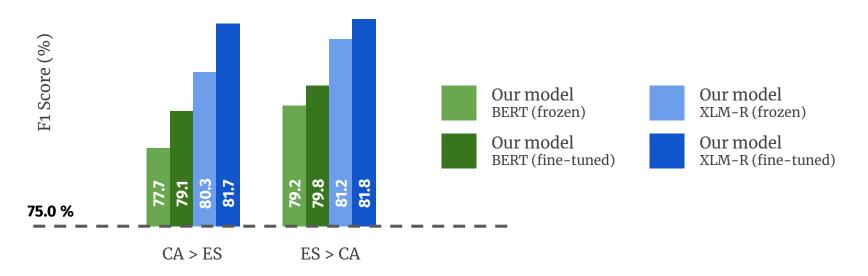
CA > ES ES > CA

^{*} Spanish and Catalan are the only languages annotated with the same predicate-argument structure inventory in CoNLL-2009.

Zero-Shot Cross-Lingual SRL

on CoNLL-2009

Our approach shows promising results in zero-shot cross-lingual SRL*.



^{*} Spanish and Catalan are the only languages annotated with the same predicate-argument structure inventory in CoNLL-2009.

Robust SRL in Low-Resource Settings

Learning curves

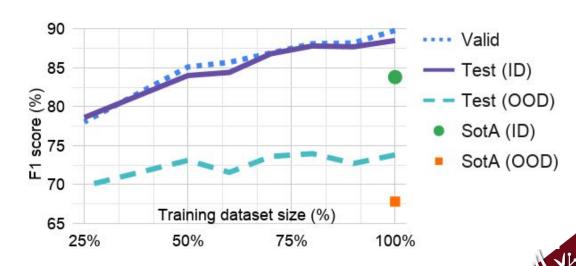
There are only 17K predicates in German (vs 37K in Catalan and 180K in English).

Robust SRL in Low-Resource Settings

Learning curves

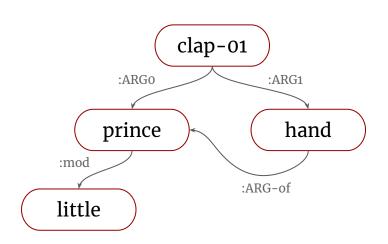
There are only 17K predicates in German (vs 37K in Catalan and 180K in English).

SOTA results with just 50% of the training data!



Cross-Lingual Semantic Parsing An overview

Abstract Meaning Representation



Can we use AMR across languages?

AMR Slogans

AMR Slogans

AMR aims to **abstract away** from syntactic idiosyncrasies.

AMR is agnostic about how to derive meanings from strings.

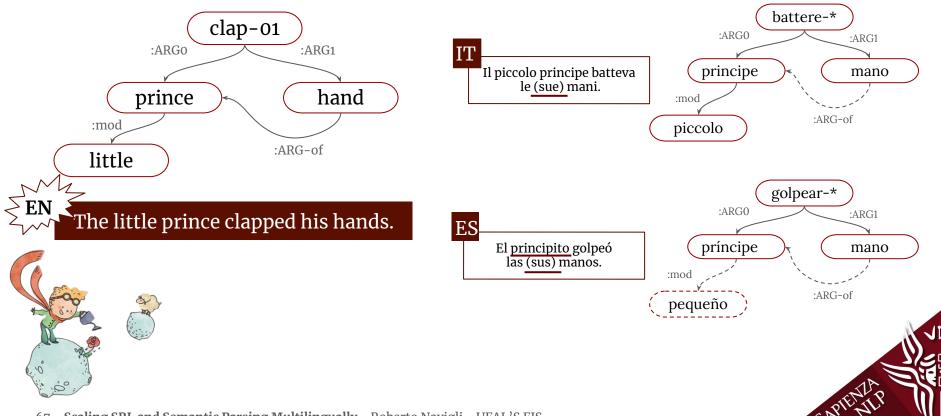
Xue et al. (2014), Migueles-Abraira et al. (2018):

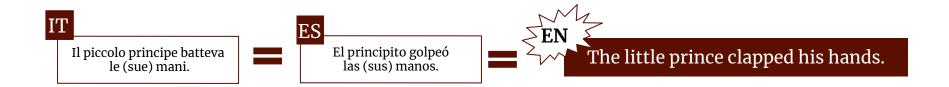
"Non an interlingua, but close";

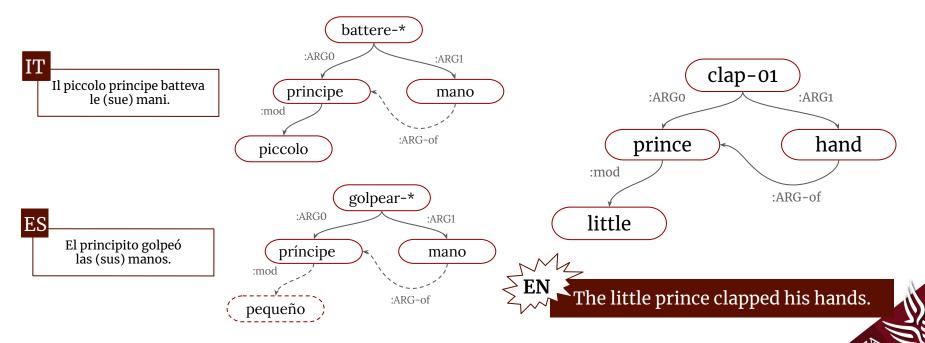
"Adjustable AMR guidelines to cover the cross-lingual aspects"

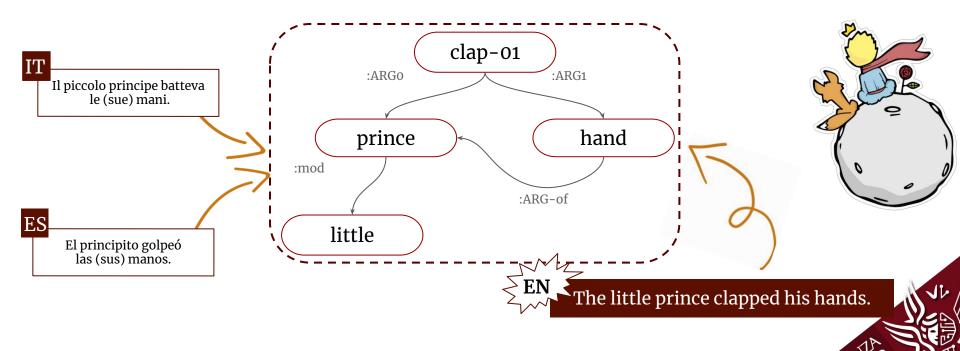
- > English PropBank
- > Spanish AncoraNet
- > Chinese Chinese PropBank
- > Czech PDT-Vallex
- >

AMR in languages other than English





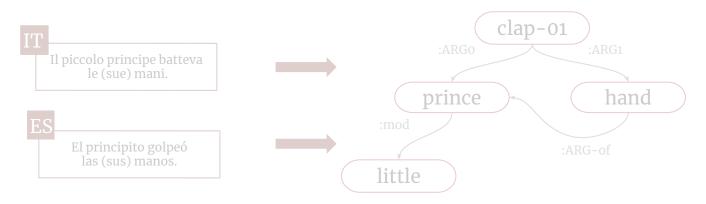




Cross-Lingual AMR Challenges

- I. Explicit/implicit word-to-node AMR alignments in English AMR parsers:
 - A. based on English
 - B. hard to be projected across languages through English

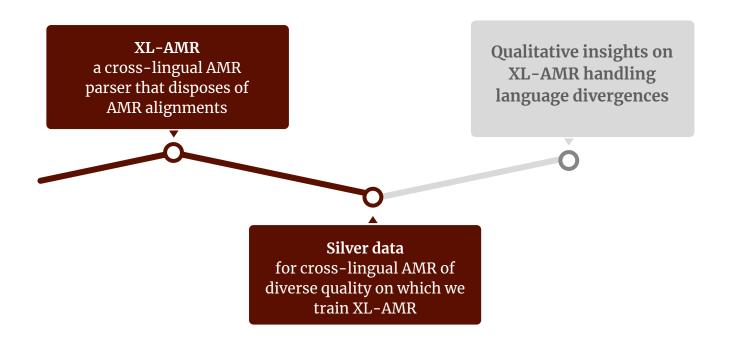
II. No available **cross-lingual AMR data**.



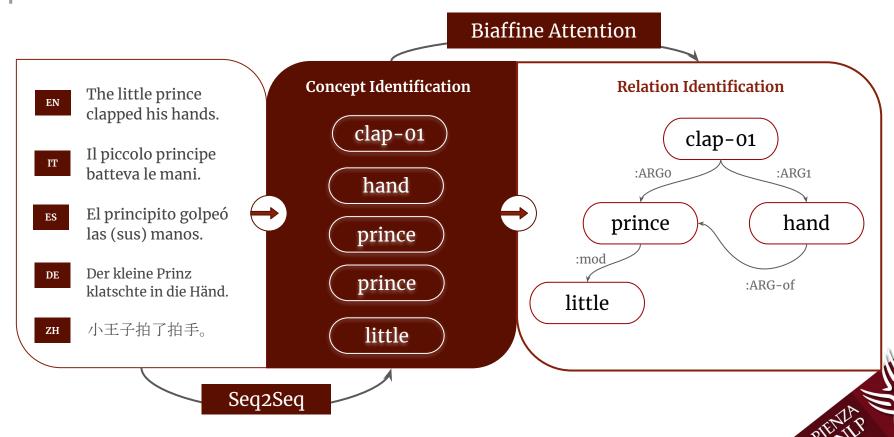
Enabling Cross-Lingual AMR Parsing

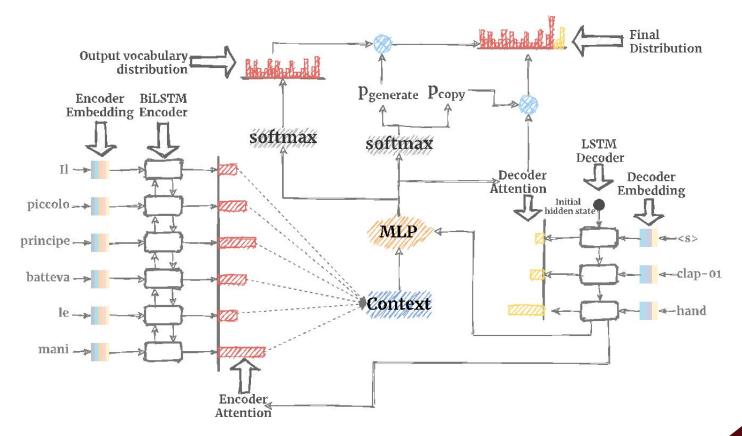
Blloshmi, Tripodi and Navigli, EMNLP 2020

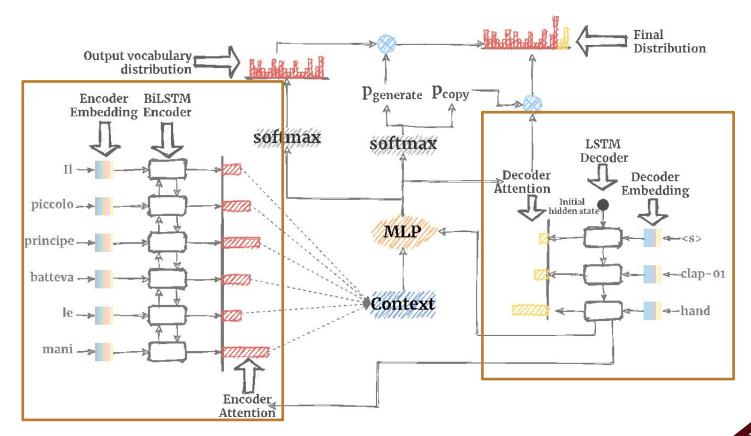
In this work ...

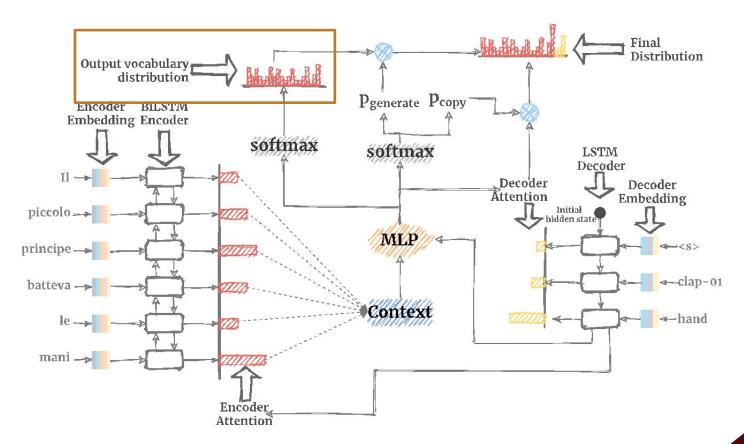


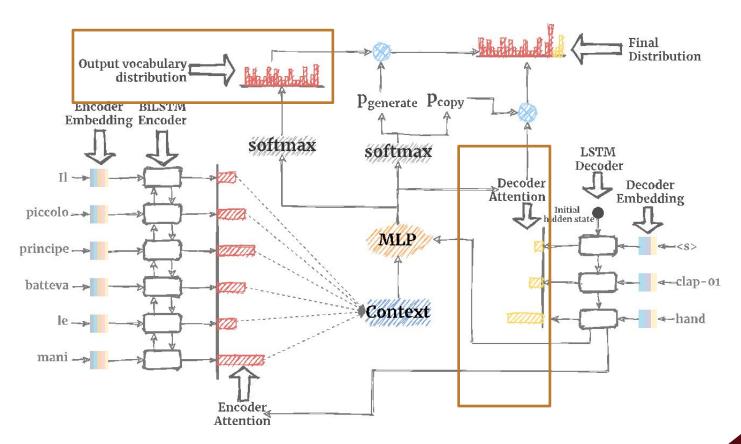
XL-AMR: Model Overview

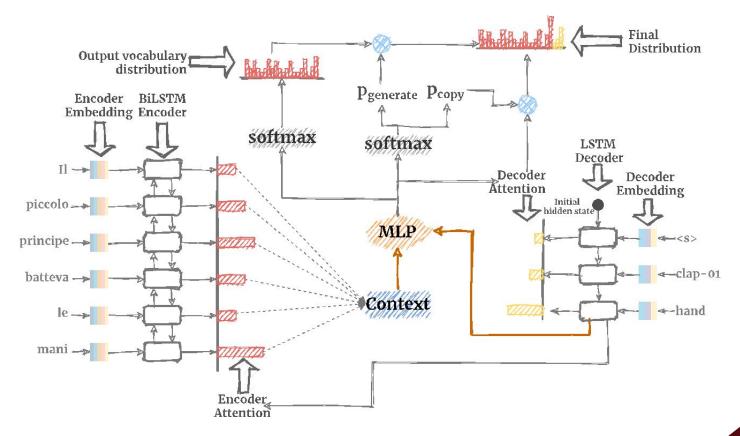


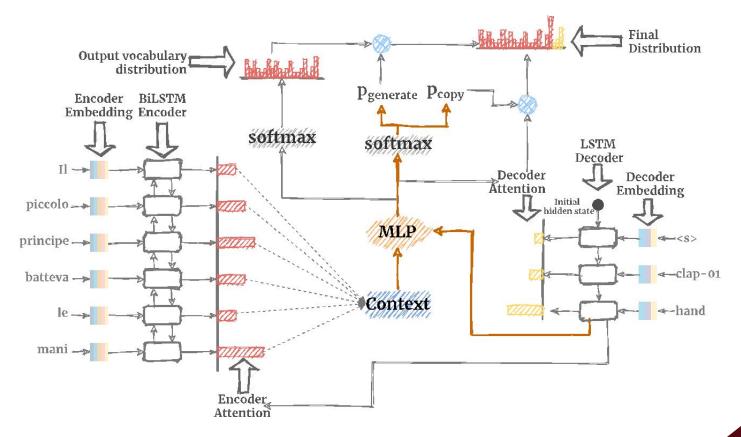


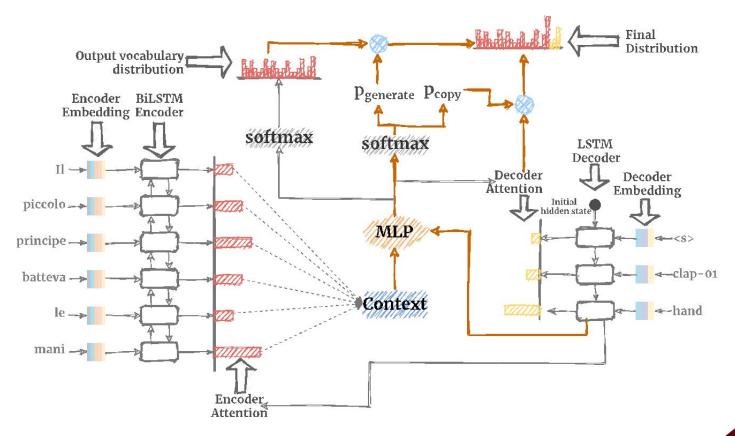


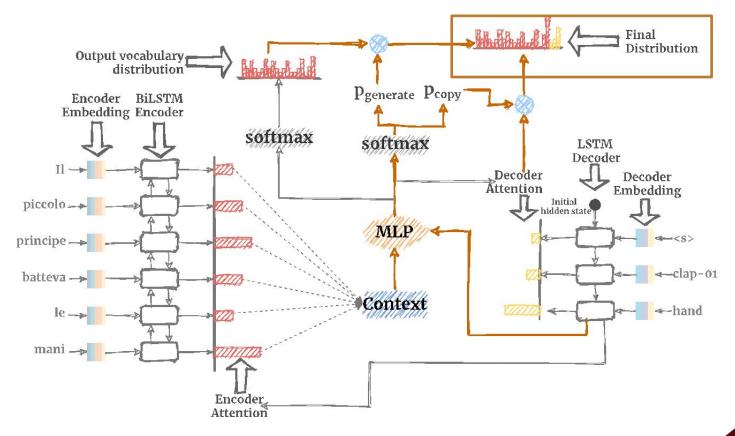












Silver Data Creation via Annotation Projection

I. through Parallel Sentences

II. through Machine Translated Sentences

Silver Data Creation via Annotation Projection

- I. through Parallel Sentences
 - Advantage: **Gold translated** sentences
 - Disadvantage: **Silver parsed** AMR graphs

PARALLELSENTS-SILVERAMR

II. through Machine Translated Sentences

Silver Data Creation via Annotation Projection

- I. through Parallel Sentences
 - Advantage: **Gold translated** sentences
 - Disadvantage: **Silver parsed** AMR graphs

PARALLELSENTS-SILVERAMR

- II. through Machine Translated Sentences
 - Advantage: **Gold parsed** AMR graphs
 - Disadvantage: **Silver translated** sentences

PARALLELSENTS-SILVERAMR

EN2AMR Parser

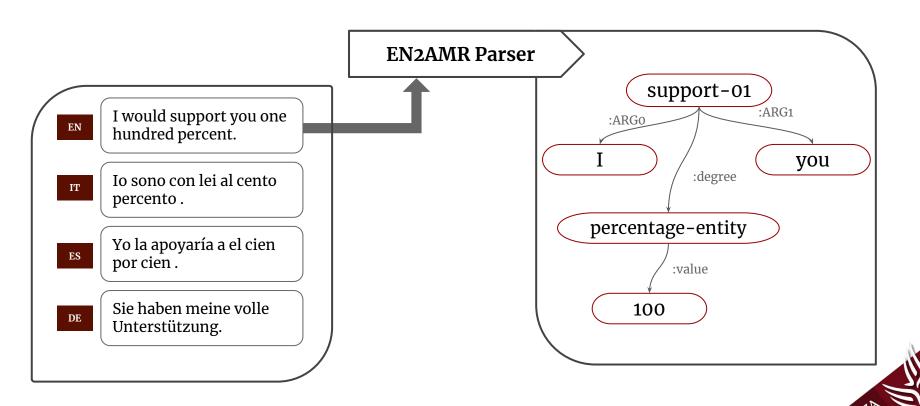
I would support you one hundred percent.

Io sono con lei al cento percento .

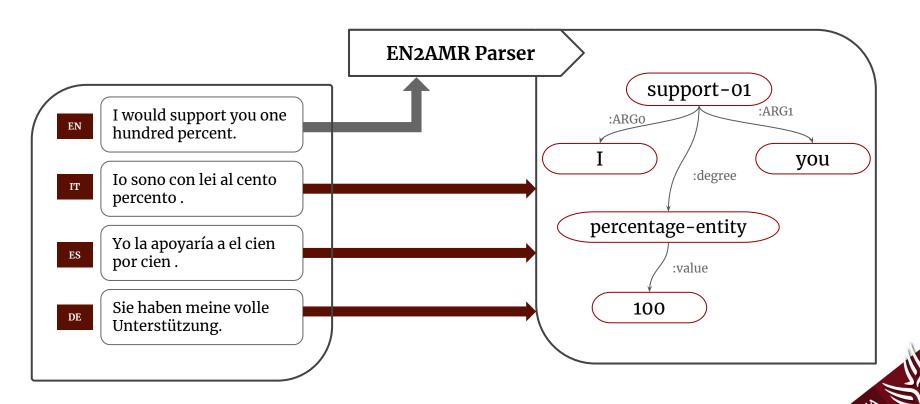
Yo la apoyaría a el cien por cien .

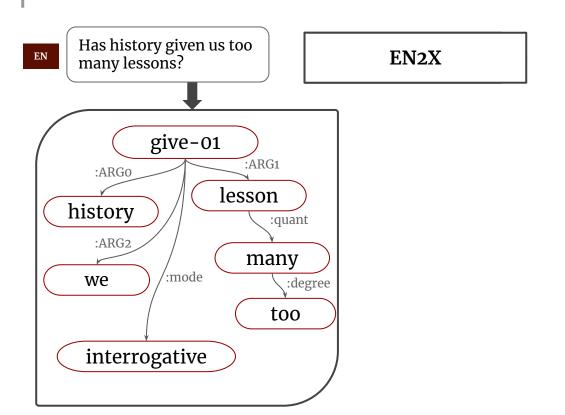
Sie haben meine volle Unterstützung.

PARALLELSENTS-SILVERAMR

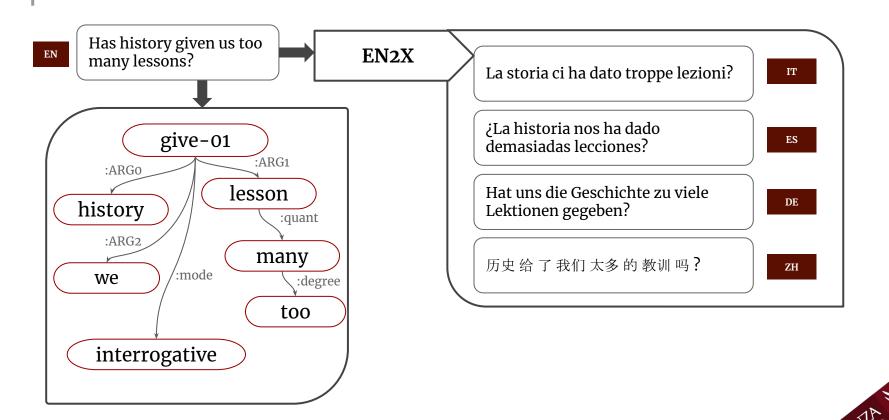


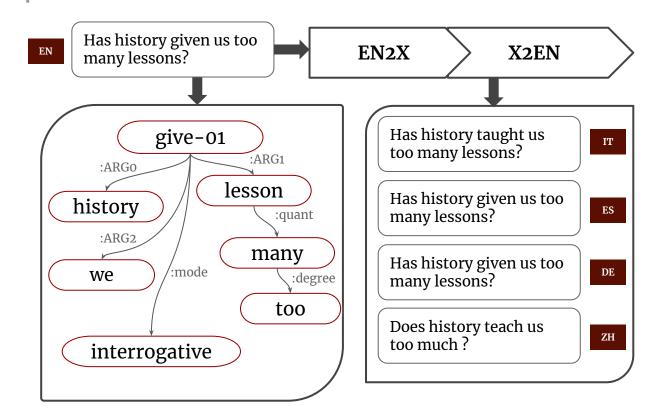
PARALLELSENTS-SILVERAMR

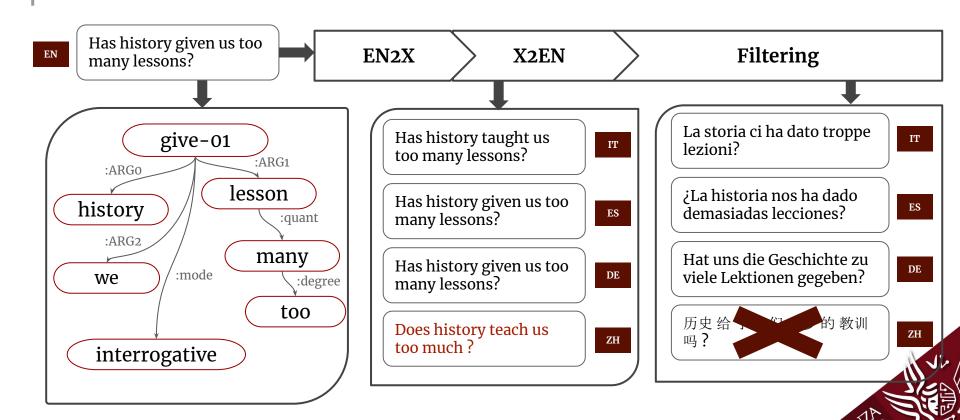


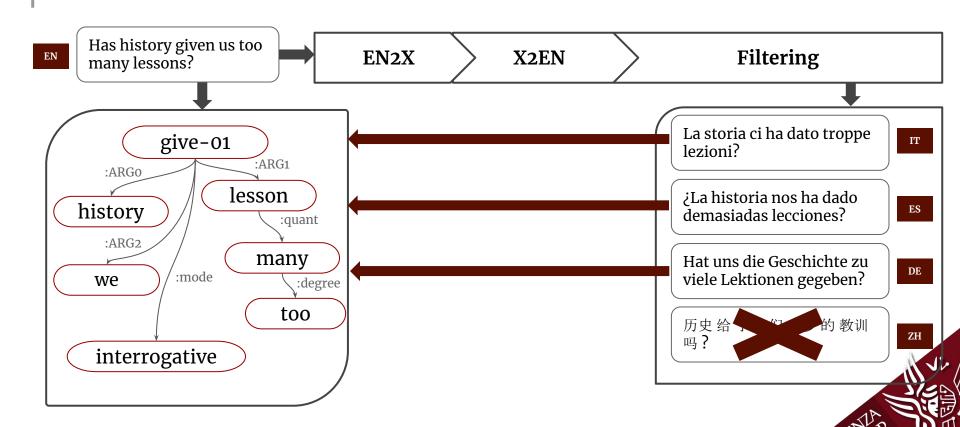


X₂EN









Experimental Setup

Configuration

Evaluation

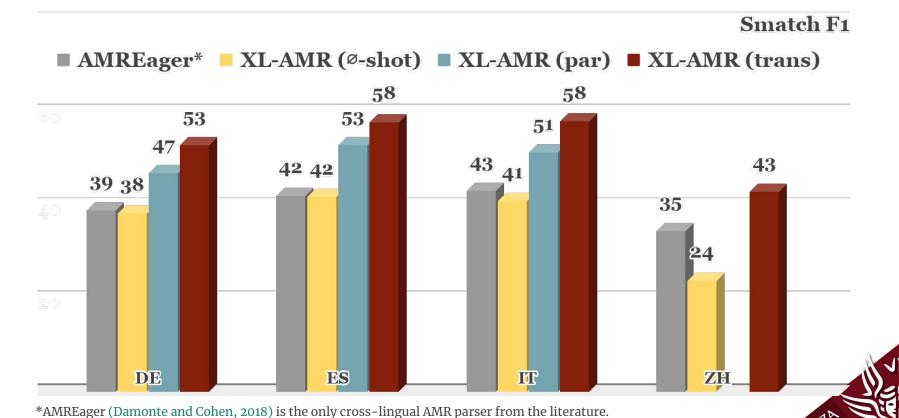
- AMR2.0 Four Translations (Damonte and Cohen, 2020):
 - A. Chinese
 - B. German
 - C. Italian
 - D. Spanish
- Smatch F1

Annotation Projection

- I. Europarl, as the parallel sentences corpus
- II. **AMR 2.0**, as gold annotated dataset

XL-AMR Variants

- Ø-shot (EN to lang)
- II. Language-Specific(lang to lang)
- III. Multilingual (all)
- IV. Bilingual (EN+lang)



I. Ø-shot XL-AMR performs on par with AMREager or worse.

II. XL-AMR (par) outperforms AMREager

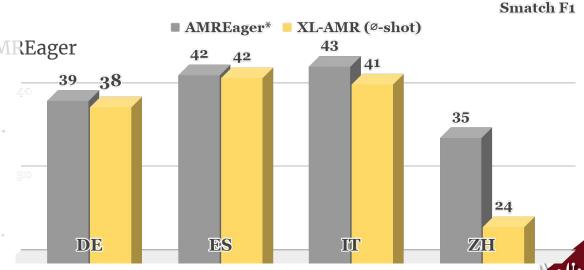
by ~8 points.

-disposal of AMR alignments.

III. XL-AMR (trans) outperforms XL-AMR (par) by 5-7 points and AMREager by 8-16 points.

-disposal of AMR alignments

-better quality corpus



I. Ø-shot XL-AMR performs on par with AMREager or worse.

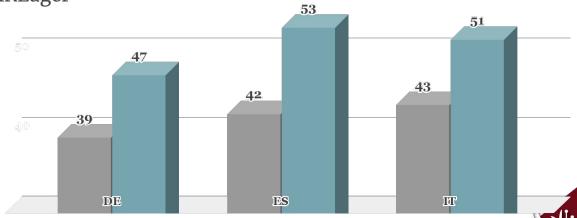
II. XL-AMR (par) outperforms AMREagerby ~8 points.

-disposal of AMR alignments.

III. XL-AMR (trans) outperforms XL-AMR (par) by 5-7 points and AMREager by 8-16 points.

-disposal of AMR alignments

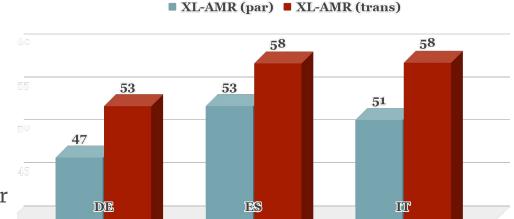
-better quality corpus



■ AMREager* ■ XL-AMR (par)

Smatch F1

- I. Ø-shot XL-AMR performs on par with AMREager or worse.
- II. XL-AMR (par) outperforms AMREagerby ~8 points.



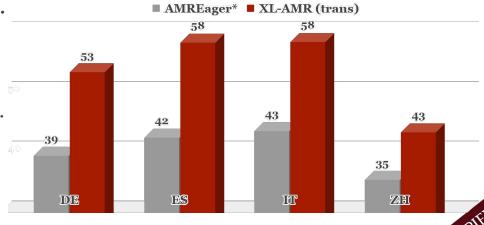
Smatch F1

Smatch F1

-disposal of AMR alignments.

III. XL-AMR (trans) outperforms XL-AMR (par) by 5-7 points and AMREager by 8-16 points.

-disposal of AMR alignments-better quality corpus



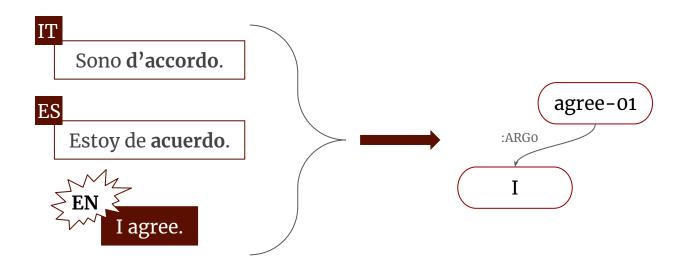
Scaling SRL and Semantic Parsing Multilingually - Roberto Navigli - UFAL'S FJS

Qualitative Analysis

Handling translation divergences of Dorr (1994)

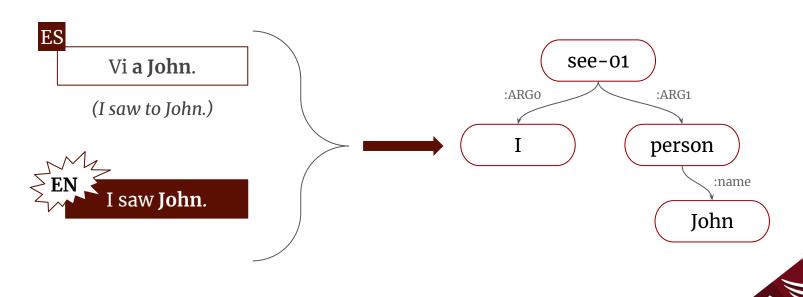
Translation Divergences

Categorical - the same meaning is expressed by different syntactic categories across languages, e.g., POS-tags.



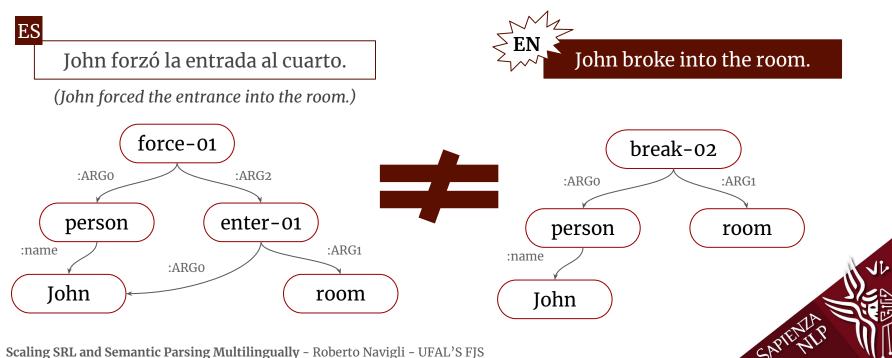
Translation Divergences

Structural - A verbal object is realized as a noun phrase in one language and as prepositional phrase in the other.



Translation Divergences

Lexical - A verb is translated with a different lexical verb across languages.



Semantic Role Labeling (SRL) Who did what to whom?

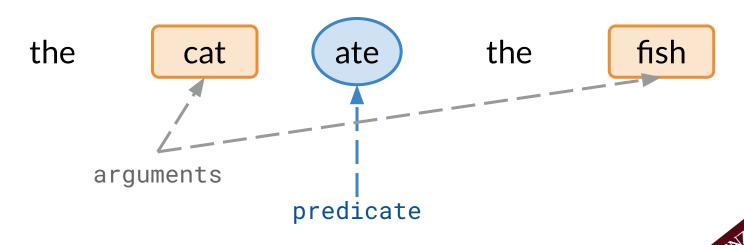
the cat ate the fish

Semantic Role Labeling (SRL) Who did what to whom?

the cat ate the fish predicate

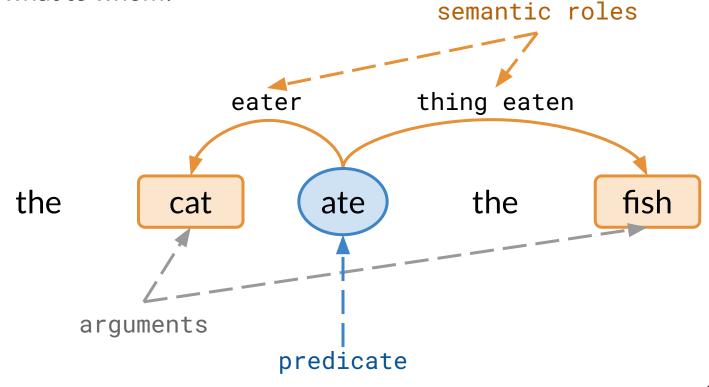
Semantic Role Labeling (SRL)

Who did what to whom?



Semantic Role Labeling (SRL)

Who did what to whom?



A unified representation for all languages

Key goal of **sentence-level semantics**:

Providing a semantic representation that is independent (or as independent as possible) from the language

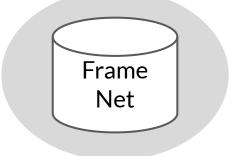
However:

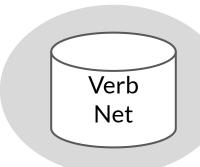
- In SRL, we are using different predicate inventories for different languages
- In AMR parsing, we are hampered by the lack of multilingual data and the use of PropBank with English-specific predicate senses

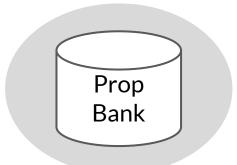
Resources for SRL

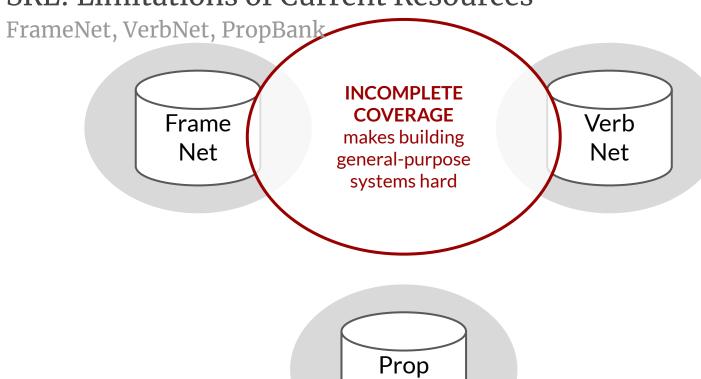
An overview

FrameNet, VerbNet, PropBank

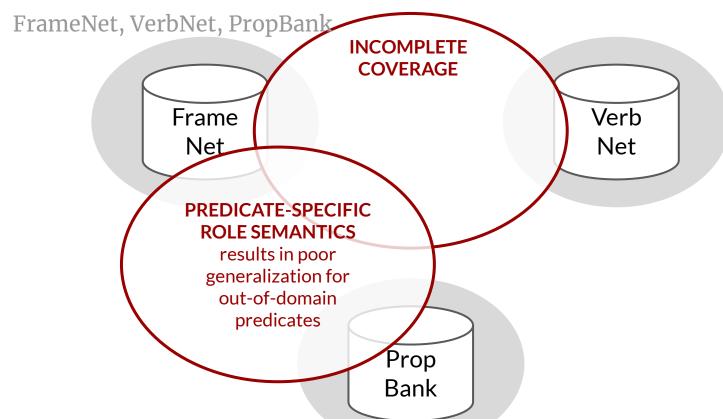


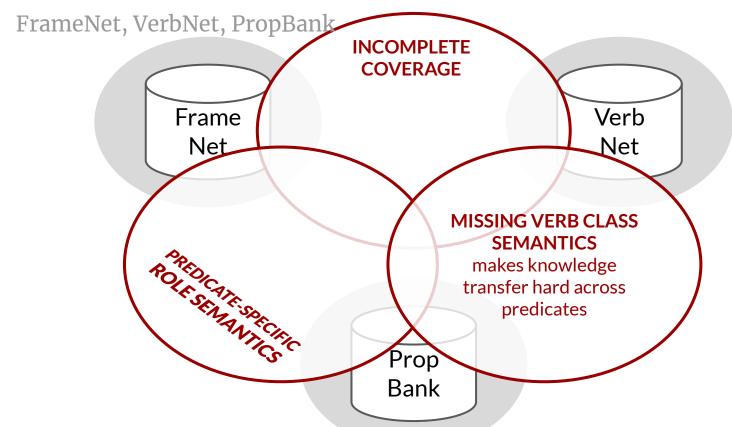


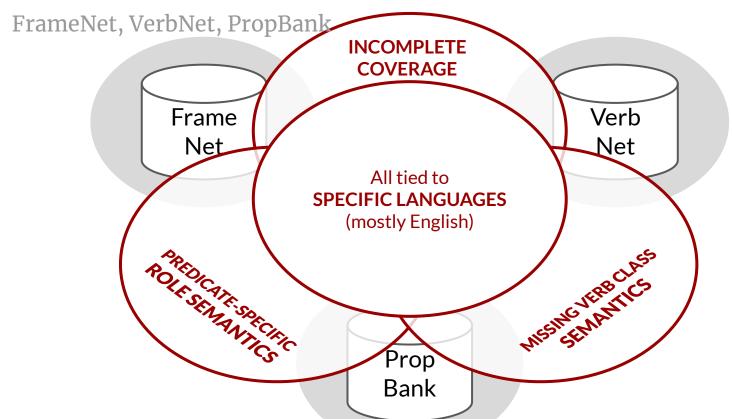




Bank





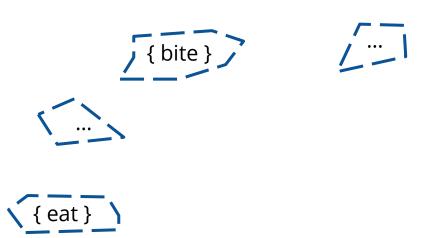


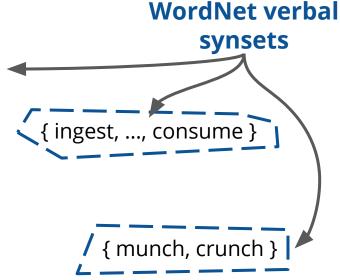
Introducing VerbAtlas

Di Fabio, Conia and Navigli - EMNLP 2019

Manually clustering predicates into frames

Creating clusters of WordNet verbal synsets





Manually clustering predicates into frames

Creating clusters of WordNet verbal synsets WordNet verbal synsets { bite } { ingest, ..., consume } similar **SCENES** and { eat] / { munch, crunch } **PARTICIPANTS** to the action { swallow, get down } { dine }

Manually clustering predicates into frames

Creating clusters of WordNet verbal synsets

```
{ ingest, ..., consume }

... { bite } ...

{ eat }

{ dine }

{ swallow, get down }

{ munch, crunch }

EAT-BITE
```


Frames in VerbAtlas

All WordNet verbal synsets organized into semantic frames

```
{ ingest, ..., consume }
            { bite }
         { eat }
{ dine }
        { swallow, get down }
   { munch, crunch }
        EAT-BITE
                            VerbAtlas
                             FRAME
                    (inspired by FrameNet)
```


Frames in VerbAtlas

All WordNet verbal synsets organized into semantic frames

```
{ roast, toast }
  { ingest, ..., consume }
                                             { fry }
                                                         { bake }
             { bite }
                                                  { cook }
          { eat }
{ dine }
         { swallow, get down }
                                                     { grill, barbecue }
                                              { stew }
   { munch, crunch }
                                                    COOK
         EAT-BITE
                             VerbAtlas
                               FRAME
                      (inspired by FrameNet)
```

Semantic Roles: from VerbNet to VerbAtlas

From VerbNet roles...

Semantic Roles: from VerbNet to VerbAtlas

... to VerbAtlas roles

Prototypical Argument Structures in VerbAtlas

Frame-level organization for Semantic Roles

VerbAtlas Semantic Role Set - inspired by VerbNet

Agent Patient Instrument Result Location ... Source

Prototypical Argument Structures in VerbAtlas

Frame-level organization for Semantic Roles

VerbAtlas Semantic Role Set - inspired by VerbNet

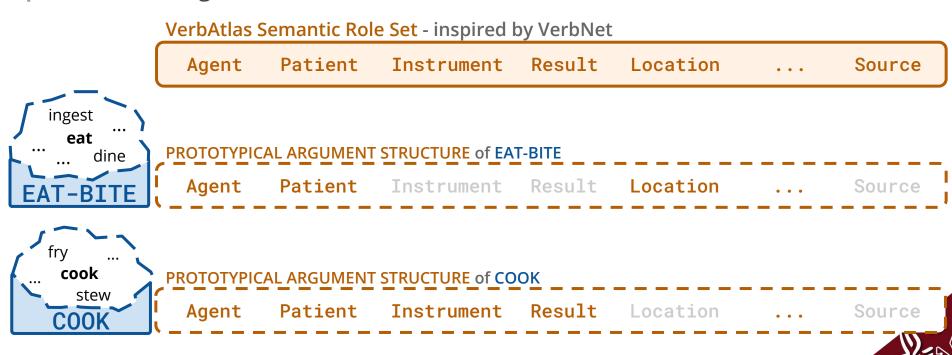
Agent Patient Instrument Result Location ... Source

PROTOTYPICAL ARGUMENT STRUCTURE of EAT-BITE

Agent Patient Instrument Result Location ... Source

Prototypical Argument Structures in VerbAtlas

Frame-level organization for Semantic Roles

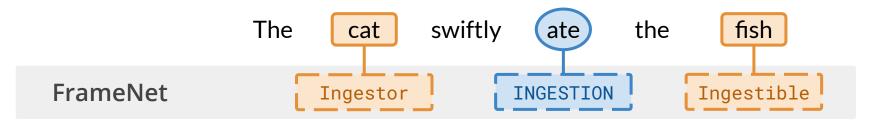


Comparing VerbAtlas

to FrameNet, VerbNet and PropBank

FrameNet vs VerbAtlas

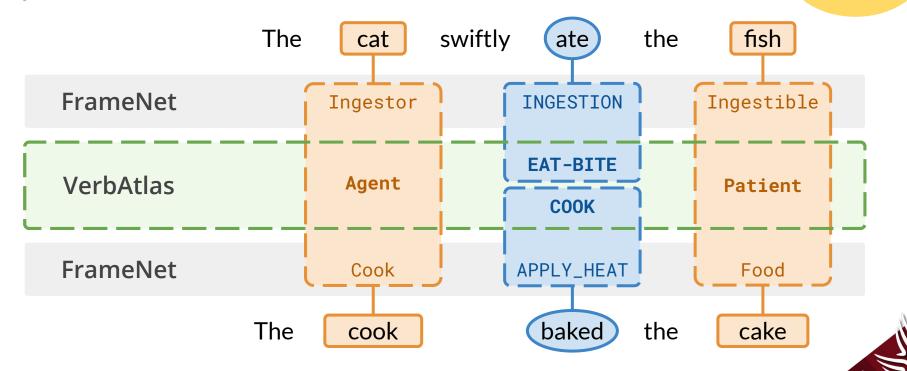
Comparing semantic roles



FrameNet vs VerbAtlas

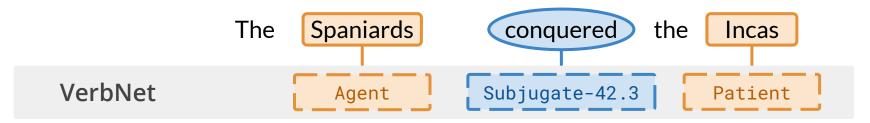
Comparing semantic roles

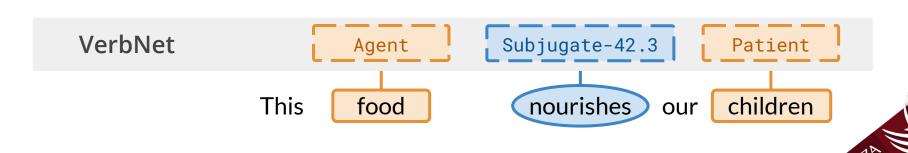
CROSS-DOMAIN ROLES



VerbNet vs VerbAtlas

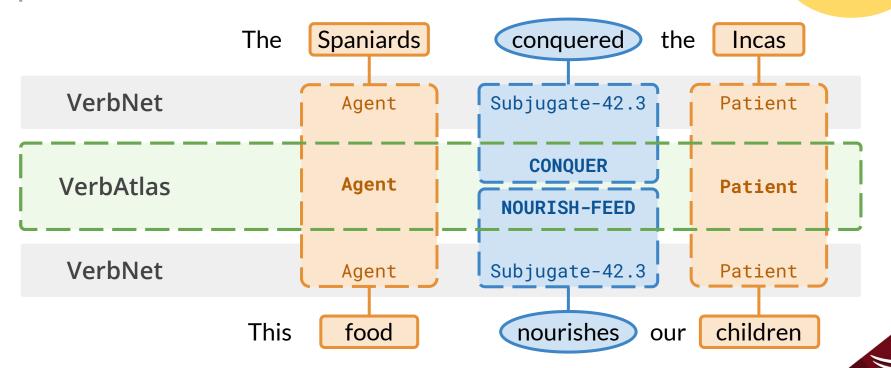
Comparing predicate classes





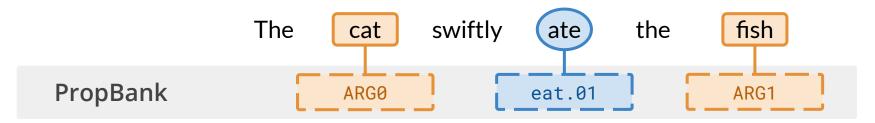
VerbNet vs VerbAtlas

Comparing predicate classes



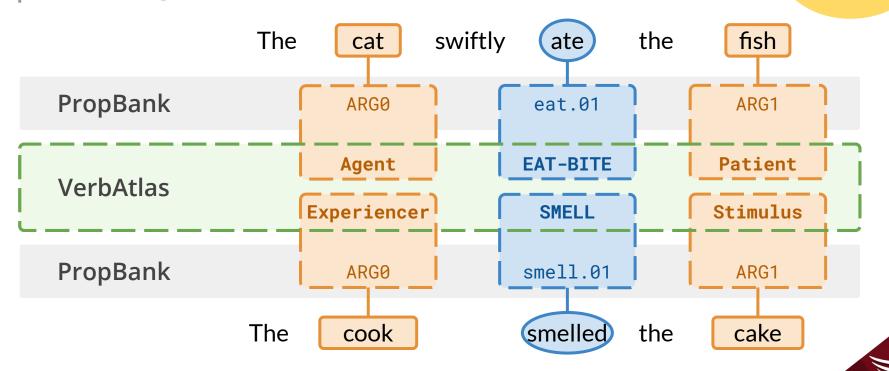
PropBank vs VerbAtlas

Comparing predicate and roles



PropBank vs VerbAtlas

Comparing predicate and roles



VerbAtlas

Statistics & Multilingual Scalability

Some Statistics

FrameNet vs VerbNet vs PropBank vs VerbAtlas

Meaning units	#
Lexical units	5,200
Senses	6,791
Framesets	10,687
	Lexical units Senses

Synsets

FULL COVERAGE of verbal meanings

13,767

VerbAtlas

Some Statistics

FrameNet vs VerbNet vs PropBank vs VerbAtlas

	Meaning units	#
FrameNet	Lexical units	5,200
VerbNet	Senses	6,791
PropBank	Framesets	10,687

Cluster type	#
Frames	1,224
Levin's classes	329
Verbs	5,649

VerbAtlas

Synsets **13,767**

Frames 466

FULL COVERAGE of verbal meanings COARSE FRAMES reduce data sparsity

Some Statistics

FrameNet vs VerbNet vs PropBank vs VerbAtlas

	Meaning units	#
FrameNet	Lexical units	5,200
VerbNet	Senses	6,791
PropBank	Framesets	10,687

Cluster type	#
Frames	1,224
Levin's classes	329
Verbs	5,649

Argument Roles	#
Frame elements	10,542
Thematic roles	39
Proto-roles	6

Synsets **13,767**

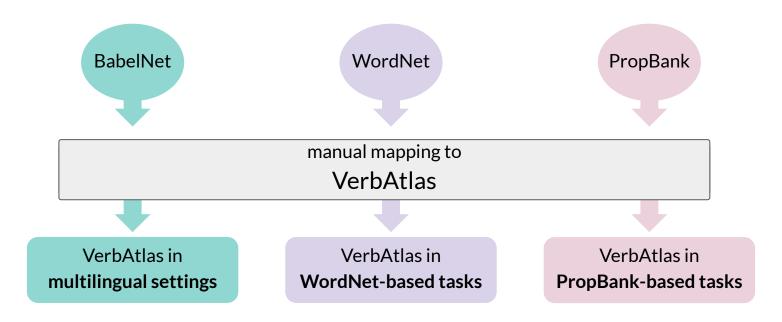
Frames 466

Semantic roles **25**

FULL COVERAGE of verbal meanings COARSE FRAMES reduce data sparsity

Linkage to Existing Resources

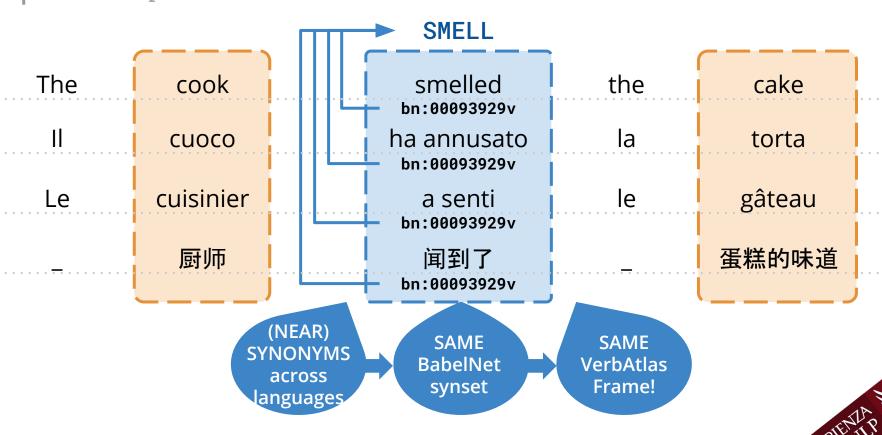
Multiple tasks and multiple languages



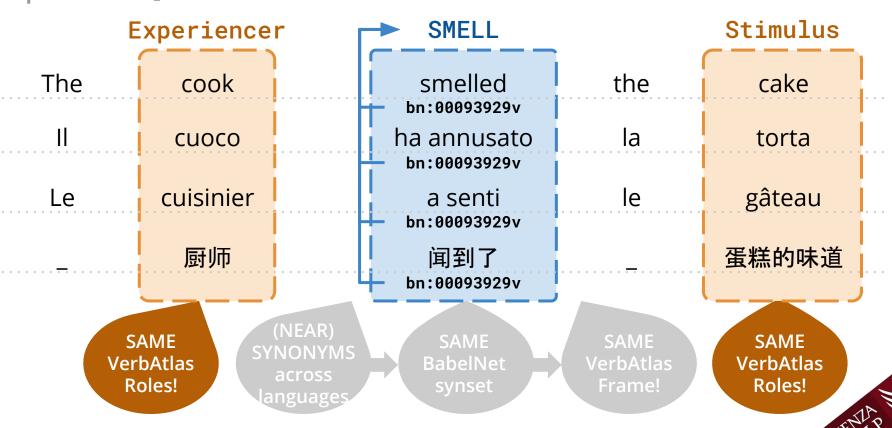
Easy Multilinguality with VerbAtlas and BabelNet An example

smelled The cook the cake la ha annusato torta cuoco gâteau Le cuisinier a senti le 蛋糕的味道 厨师 闻到了

Easy Multilinguality with VerbAtlas and BabelNet An example



Easy Multilinguality with VerbAtlas and BabelNet An example



VerbAtlas and SRL

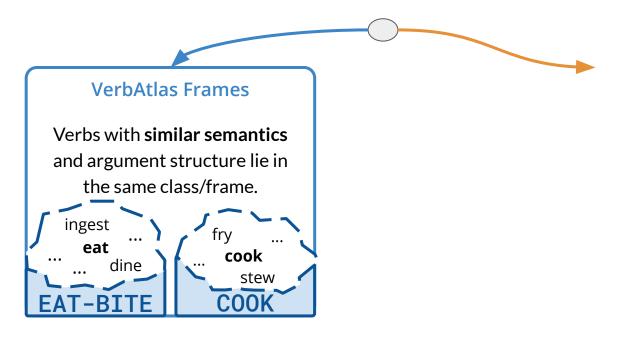
Experimental Validation

|VerbAtlas and SRL

VerbAtlas abstractions for SRL

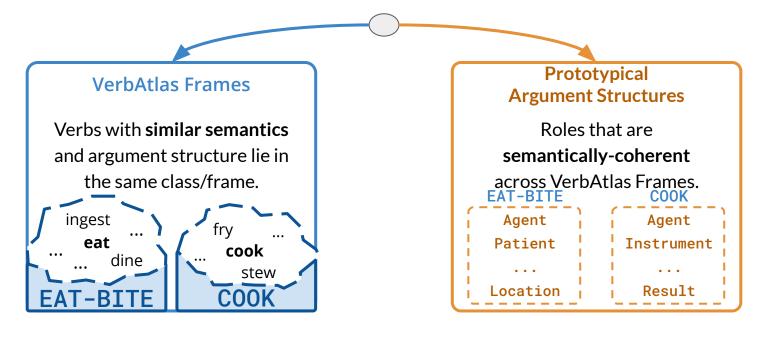
|VerbAtlas and SRL

VerbAtlas abstractions for SRL



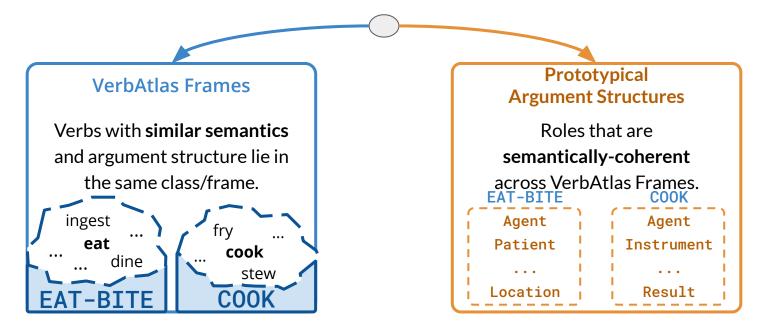
|VerbAtlas and SRL

VerbAtlas abstractions for SRL



VerbAtlas and SRL

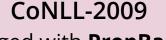
VerbAtlas abstractions for SRL



Hypothesis: VerbAtlas Frames and Roles lead to better SRL performance

Dataset: CoNLL-2009

Retagging the dataset with VerbAtlas



tagged with **PropBank**

BabelNet WordNet PropBank

manual mapping to

VerbAtlas

VerbAtlas in multlingual settings

VerbAtlas in WordNet-based tasks

VerbAtlas in **PropBank-based tasks**

CoNLL-2009 tagged with VerbAtlas

Model architecture

1 An existing SRL system, from Cai et al. (2018)

2

3

PropBank/NomBank role scorer

BiLSTM layers

Word representation layer

Predicate disambiguation layer

Model architecture

- An existing SRL system, from Cai et al. (2018)
- 2 Aiding predicate disambiguation with frame disambiguation

3

PropBank/NomBank role scorer

©0000 ©000

BiLSTM layers

Word representation layer

Predicate disambiguation layer

Frame disambiguation layer

Model architecture

- An existing SRL system, from Cai et al. (2018)
- 2 Aiding predicate disambiguation with frame disambiguation
- 3 Achieving a deeper understanding thanks to finer-grained semantically-coherent roles

PropBank/NomBank role scorer

VerbAtlas role scorer

Predicate

BiLSTM layers

Frame dis

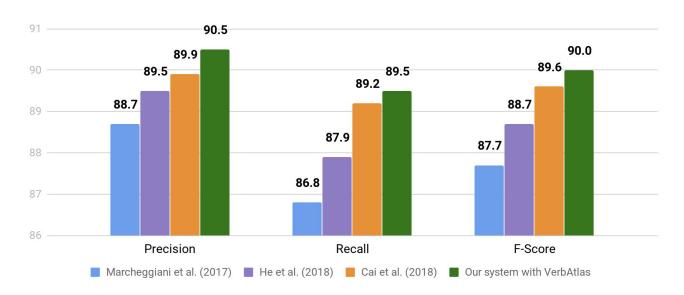
Predicate disambiguation layer

Frame disambiguation layer

Word representation layer

Results in CoNLL-2009 (1)

In-domain evaluation

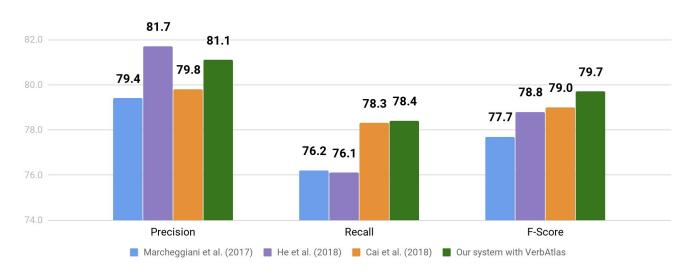


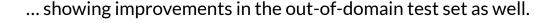
The integration of VerbAtlas leads to significant improvements in the in-domain test set...

^{*}improvements are statistically significant (p < 0.05)

Results in CoNLL-2009 (2)

Out-of-domain evaluation



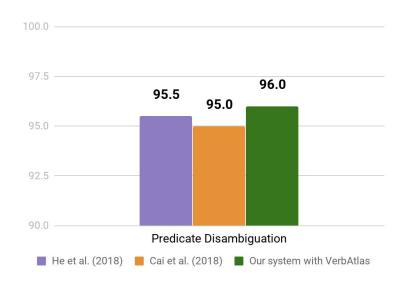


^{*}improvements are statistically significant (p < 0.05)

GENERALIZES
BETTER
ACROSS
DOMAINS

Results in CoNLL-2009 (3)

Predicate sense disambiguation



*improvements are statistically significant (p < 0.05)

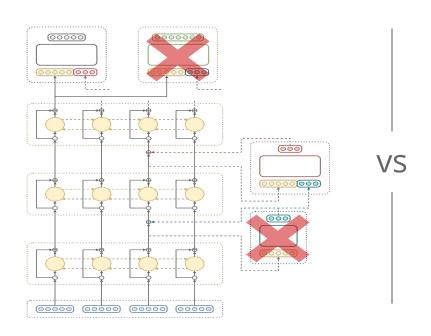
Bonus point

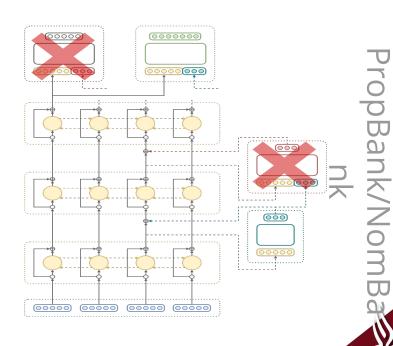
Outperforming the (pre-BERT) state-of-the-art in predicate disambiguation.

Contribution of VerbAtlas to the Results

An Ablation Study

NO VerbAtlas





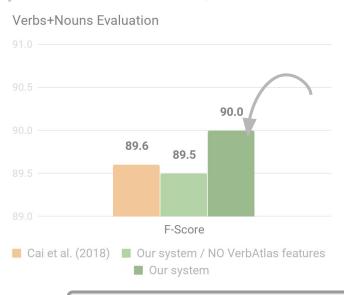
Contribution of VerbAtlas to the Results An Ablation Study

Verbs+Nouns Evaluation

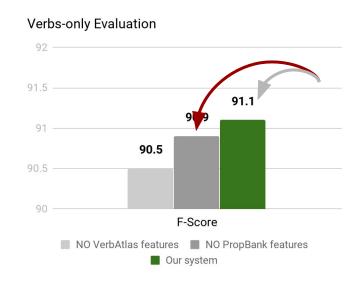
When VerbAtlas is **removed**, our system falls in line with Cai et al. (2018).

Contribution of VerbAtlas to the Results

An Ablation Study



When VerbAtlas is **removed**, our system falls in line with Cai et al. (2018).



Removing VerbAtlas causes a larger drop in performance.

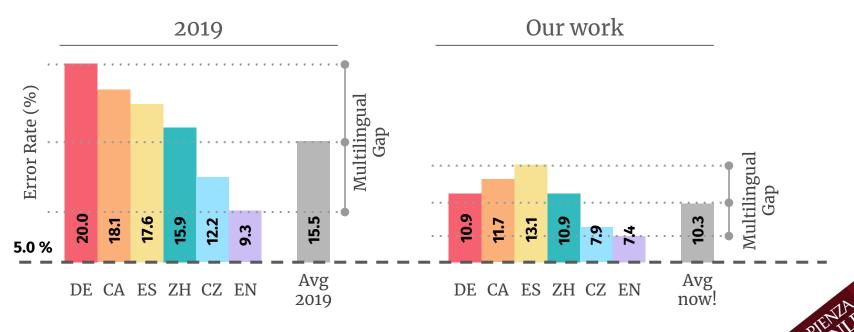
Conclusion (& Future Work)

- Multilinguality in Semantic Role Labeling
- Towards an **interlingua** with Semantic Parsing
- VerbAtlas: a cross-lingual semantic inventory

SRL - Conclusion

Bridging the multilingual gap in multilingual SRL (Conia and Navigli, 2020)

Yes, it is possible to narrow the gap between high- and low-resource languages!



SRL - Conclusion & Future Work

Bridging the multilingual gap in multilingual SRL (Conia and Navigli, 2020)

Our study shows that a language-agnostic approach can:

- Significantly narrow the multilingual gap
- Advance the state of the art in 6 languages
- Be **robust** in low-resource settings
- Provide promising results in zero-shot cross-lingual SRL

We hope that our work will:

- Provide a strong multilingual baseline for syntax-based innovations
- Prompt further work in cross-lingual SRL
- Encourage the use of SRL in cross-lingual downstream tasks

Conclusion

Bridging the multilingual gap in multilingual SRL (Conia and Navigli, 2020)

Bridging the gap in multilingual Semantic Role Labeling

without relying on any language-specific features (lemma, POS, syntax)

and setting a strong and robust baseline for future innovations

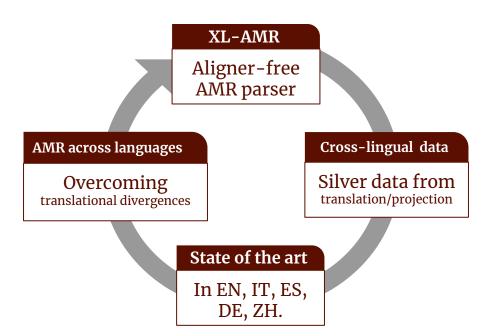
Our language-agnostic approach:

- Significantly narrows the multilingual gap
- Advances the **state of the art** in 6 languages
- Is robust in low-resource settings

Semantic Parsing - Conclusion

Enabling cross-lingual Semantic Parsing (Blloshmi, Tripodi and Navigli, 2020)

AMR can act as an interlingua and cross-lingual data (even silver) is useful!



Conclusions

XL-AMR

An aligner-free cross-lingual AMR parser

AMR across languages

XL-AMR overcomes most of the translational divergences

Cross-lingual AMR data

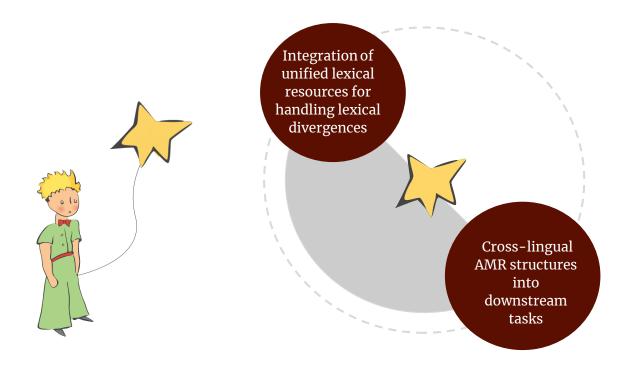
Silver data of diverse quality using different techniques

State of the art

XL-AMR sets the state of the art in all the tested languages

Semantic Parsing - Future Work

Enabling cross-lingual Semantic Parsing (Blloshmi, Tripodi and Navigli, 2020)



VerbAtlas - Conclusion

A novel large-scale verbal semantic resource (Di Fabio, Conia and Navigli, 2019)

FRAMES to organize verbs into semantic clusters

ROLES that generalize across verbs and frames to WordNet, BabelNet and PropBank MORE! e.g. additional synset-level information, ...

Conclusions...

VerbAtlas: a novel large-scale verbal semantic resource, featuring:

FRAMES
to organize verbs
into semantic
clusters

ROLES
that generalize
across verbs and
frames

to WordNet, BabelNet and PropBank MORE!
e.g. additional
synset-level
information, ...

...and Future Work

GOING MULTILINGUAL with BabelNet LANGUAGE MODELS + VerbAtlas

SYNTAGNET + VerbAtlas

VerbAtlas is online! Check it out at: http://verbatlas.org

/erb/	Atlas		ABOUT
	eat		SEARCH
	eat bite	eat bite	
	forage Wander and feed	LOCATION	
	go down Be ingested	PATIENT	
	pop Take drugs, especially orally	AGENT	
	gum • mumble Grind with the gums; chew without teeth and with great difficulty	individual	
	victual	fauna	

Thank you!

Wrapping up, Generationary...

- ★ handles DM with a pure, simple **SEQ2SEQ FORMULATION**
- ★ exploits **PRIOR KNOWLEDGE** through pre-training
- **★** performs **STATE-OF-THE-ART DEFINITION MODELING**
- ★ is able to **TACKLE DISCRIMINATIVE TASKS** such as WSD, matching state-of-the-art approaches with **NO FURTHER TRAINING**
- ★ is not bound to any sense inventory and benefits from MULTIPLE RESOURCES
- ★ can both disambiguate and generalize to **UNSEEN EXPRESSIONS**.

Current/future directions

- Going MULTILINGUAL (e.g. use BabelNet definitions)
 - Spoiler: BabelNet 5.0 announced soon with 20 millions synsets and 500 languages!
- Going more SEMANTIC
 - Both in SRL and Semantic Parsing
- Much more!

Thank you for your attention!

Check out our work!

- BabelNet: https://babelnet.org/
- VerbAtlas: http://verbatlas.org/
- InVeRo: http://nlp.uniroma1.it/invero/
- Our group: http://nlp.uniroma1.it/

