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The problem of parsing

 input: text in a target language, e.g. Slovak:
 Rudolf ľúbi vlaky (“Rudolf likes trains”)

 output: syntactic analysis of the text (UD tree)

nsubj
Rudolf

root
ľúbi

dobj
vlaky
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A solution

 if we have a target treebank
 train a parser on the target treebank (UDPipe)
 apply the parser to the text, obtain a parse tree

tagger&parser
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 translate it into the target language (MT, e.g. Moses)
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~ 70 languages,
news/books/wiki

~ 7000 languages
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An evaluation (Rosa+, 2017)
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Outline

Cross-lingual Transfer of Dependency Parsers
 Brief overview of the problem and a solution
 Why and how we parse text
 Without Machine Translation: Delex parsing
 How to do Machine Translation
 How to choose the source language
 How to combine multiple sources
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Why to parse text

 to understand its structure (→ and its meaning)
 in formal linguistics

 automatic pre-analysis for corpus linguistics

 in computational linguistics
 traditionally: preprocessing of input for further tasks
 modern way: train end2end NN on labelled text data
 insufficient data for the end task: anything can help

 parsing as an abstraction over the input
 rules/heuristics to solve the task
 e.g. Depfix, coreference, chatbot, text generation...
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How does a parser work

 ML task: for each word, determine its
head word and the relation to it

 dependency trees vs. phrase-structure trees

 input representation features – on dependent, its 
potential head, as well as context words:

 word distance (shorter edges more likely)
 word order (left/right branching)
 part-of-speech tags – the killer feature (±morphofeats)
 word forms – the disambiguation feature

 inference algorithm: e.g. MST or shift-arc parsing

nsubj
Rudolf

root
likes

dobj
trains
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Lexicalization for disambiguation

I
PRON

eat
VERB

burger
NOUN

with
PREP

fries
NOUN

I
PRON

eat
VERB

burger
NOUN

with
PREP

hands
NOUN

nmod

obl

a
DET

a
DET
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Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

#root

 graph
 words → nodes + virtual root node
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Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

#root

 nearly-complete directed graph
 all possible dependency edges
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Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

#root
22.3 -5.2 20.7

16.448.7

13.8

32.5 -12.4

7.3

 weighted graph
 edge weight = sum of weights of features active 

on that edge (weights come from trained model)
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Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

#root
22.3 -5.2 20.7

16.448.7

13.8

32.5 -12.4

7.3

 MST algorithm: Chu-Liu-Edmonds or Eisner



Rudolf Rosa – Cross-lingual Transfer of Dependency Parsers 16/62

#root

Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

 unlabelled parse tree
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#root

Maximum Spanning Tree Parser

Rudolf
NOUN

likes
VERB

trains
NOUN

dobj

root

nsubj

 labelling: a Markov chain labeller
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Delexicalized parsing

 delex parsing = without lexical features
 delete word forms from data, use POS & position

#root
Rudolf
NOUN

likes
VERB

trains
NOUN

dobj

root

nsubj

#root NOUN VERB NOUN
dobj

root

nsubj

delexicalization
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Delexicalized parsing: Motivation

 POS tags = the killer feature
 supervised mono: delex ~70%, lex ~80%

 universal POS tags shared across languages
 no need for translation
 a delex parser is a “universal” parser
 easy combination of multiple source languages

 simple task, easy to experiment with
 all early work on cross-lingual parsing uses delex
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Delex parsing: Harmonization

 source and target must use the same annotation
 harmonization of existing treebanks/new annotation

 HamleDT (ÚFAL) ← PDT & Interset (existing data)

 uni-dep-tb (Google) ← Stanford Deps (new data)

 Universal Dependencies, now v2.1 (existing + new)

 17 universal POS ← Univ. POS (Petrov+, 2011)

 21 universal features ← Interset (Zeman, 2008)

 37 universal dependencies ← USD (de Marneffe+, 2014)

 still some heterogeneity – worth addressing...
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Delexicalized parsing: Evaluation

Lexicalized supervised
Delexicalized supervised

Delexicalized cross-lingual
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Delexicalized parsing: Problems I.

 assumes having a tagger for target language
 focus: under-resourced languages

 typically no tagger available
 has tagger → often also has treebank

 cross-lingual tagger projection needs parallel texts
 why not also use those for MT-based lexicalization?
 lexicalized parsing usually better than delexicalized
 maybe different in case of small parallel data?

 Bible paper (Agić+, 2015) and further papers
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Delexicalized parsing: Problems II.

 assumes strong source-target grammar similarity
 true for all cross-lingual methods
 but lexical information can help to disambiguate!

      a     red  strawberry  and        a   yellow banana
DET  ADJ   NOUN     SCONJ DET  ADJ   NOUN

    una  fragola rossa        e         una  banana gialla
DET  NOUN  ADJ      SCONJ DET   NOUN  ADJ

 more sensitive to choice of source language
 word order, auxiliaries, morphology, data size...
 wait till end of talk!
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Outline
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What to translate

 translate input text (target→source)
 use a ± standard source parser to parse it
 …translation done at inference

 translate training treebank (source→target)
 train a pseudo-target parser on the translated TB
 …translation done at training

 other options
 parse source side of parallel text, project trees
 translate the word forms in the trained model
 …
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What to translate

 translate input text (target→source)
 translate training treebank (source→target)

 empirically better results
 parser trained on noisy data→hopefully more robust
 can employ monolingual target texts

 MT: train a target language model
 parser: pre-train word embeddings (NN parser)

 easier combination of multiple sources
 simpler inference – can directly parse target texts
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How to translate

 source and target sentences do not map 1:1
 problems even with very similar languages
 obviously worse for more distant languages

go
VERB

by
PREP

train
NOUN

jet
VERB

vlakem
NOUN
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Solutions to non-isomorphism

 ignore it, act if the languages align 1:1
 super-simple – Moses with phrase length = 1

 ± reordering, ± N:N alignment (e.g. 2:2)
 lower-quality MT, but seems not that crucial

 complex projection heuristics
 can use M:N word-alignment and phrase-based MT

 or even NMT, but maybe that's an overkill
 omit some nodes, guess some edges&deprels...
 MT less noisy x projection more noisy
 seems similar for close langs, better for distant langs

that's what
I do now

Hwa+ (2005), Ramasamy
(2014), Tiedemann+ (2014)
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Tried various MT setups

 word-alignment and decoding systems
 Giza++/MGiza++ with Moses, word-based setting

 not SotA anymore but still very good and reliable
 MonolingualGreedy Aligner (MP) / MonoAlign (DM) 

with simple single-best decoding
 Jaro-Winkler, POS, position

 MonoTrans (RR)
 translation/guessing without parallel data

 also tried other combinations
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Various MT setups (12 lang pairs)

MonoAlign+simple MonoAlign+Moses MGiza+Moses
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Tried various morphs/subwords

 morphs could get closer to 1:1 correspondence
 joint segmentation and alignment? (Synder+, 2008)

 translation via morphs could do with less data
 split rare complex words into frequent simple morphs

go
VERB

by
PREP

train
NOUN

jet
VERB

-em
-NOUN

src:

tgt:

vlak
NOUN

 complex issue
 how to split?
 how to parse?
 how to label?
 adds noise
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Subwords in parsing

 splitting into subwords adds noise
 similar words can get split differently
 additional noise: affix/root classification

 still hard to achieve the 1:1 alignment
 parallel data not sufficiently parallel
 does not solve all phenomena

 root instead of original word, affixes as leaves
 adds noise, does not bring improvements
 automatic parse tree may be “invalid”
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Bilingual word embeddings

 no improvement found under various setups
 word2vec, fastText, SID-SGNS (Levy+, 2016)

 parser seems to rely on word identity a lot
 embeddings useful only in tiny local neighbourhood
 cannot exploit the full continuous vector space
 fails if embeddings are transferred into “void”

 summing/averaging/interpolating all bad
 mediocre if same vectors used on both sides

 why should be better than 1:1 MT?
 MT has disambiguation, embeddings don't
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Choosing the source language

 base: always use English as the source
 not very wise (e.g. 30% instead of 60%)

 for given target, use source that:
 is very similar

 family, word order, auxiliaries, morphology...
 multidimensional, interesting problem

 has large-enough data
 treebank, parallel data
 not much research



Rudolf Rosa – Cross-lingual Transfer of Dependency Parsers 38/62

Source-target similarity

 typological properties from WALS (Naseem+, 2012)

 language family, word order, morphology...

 distribution of POS tag ngrams (Rosa+, 2015)

 similarity of word order and auxiliary usage

 lang-id based on character ngrams (Agić, 2017)

 identify target language as one of the source langs.

 …combination of all of these (Agić, 2017)

 possibly done separately for each sentence

 sentence weighting POS ngram LM (Søgaard+, 2012)
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KL
cpos

3 language similarity

 Kullback-Leibler divergence of POS trigram 
distributions

de cs en it
0%

1%

2%

3%

DET ADJ NOUN

DET NOUN ADJ

#start ADJ NOUN

src 1: src 2: src 3:tgt:

KLcpos3(tgt , src)= ∑
∀ cpos3

∈tgt

f tgt ( cpos
3 ) ⋅log( f tgt ( cpos

3 )

f src ( cpos3 ) )
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KL
cpos

3 language similarity

 reasonable performance
 identifies best source treebank in ~50% cases
 less reliable on more distant language pairs

 requires POS-tagged target data
 so far: only evaluated with gold POS and delex
 future work: evaluate with cross-lingual POS

 but results of (Agić, 2017) are very promising
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Using the source-target similarity

 select best source
 weighted combination of multiple sources
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Multilingual parser combination

 treebank concatenation (McDonald+, 2011)

 parse tree combination (Rosa+, 2015)

 parser model interpolation (Rosa+, 2015)

 …
 ±weighting by language similarity
 pre-existing: monolingual parser combination

 Zeman+ (2005), Holan+ (2006), Sagae+ (2006), Green+ (2012), 
Green (2013)...

 note: older experiments (delex, unlabelled)
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Treebank concatenation

 concatenate all source treebanks
 delexicalized or after translation into target language

 train one parser on the multi-treebank
 apply the parser to the target text
 baseline method

 weighting difficult (must modify training algorithm)
 takes ages to train (huge data)
 treebank influence proportional to its size
 outcome = one standard parser (universal if delex)
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Parse tree combination

 train a separate parser for each source treebank
 delexicalized or after translation into target language

 separately apply each parser to target text
 voting on edges & MST algorithm → final tree
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Parse tree combination

VERB PREP NOUN#root

VERB PREP NOUN#root

VERB PREP NOUN#root

VERB PREP NOUN#root

src 1:

src 3:

src 2:

tgt:
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Parse tree combination
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VERB PREP NOUN#root
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Parse tree combination
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Weighted parse tree combination

VERB PREP NOUN#root

VERB PREP NOUN#root

VERB PREP NOUN#root
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Weighted parse tree combination
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Parse tree combination

 train a separate parser for each source treebank
 delexicalized or after translation into target language

 separately apply each parser to target text
 voting on edges & MST algorithm → final tree
 well-performing method

 weighting easy
 training naturally parallelizable
 treebank size not leaking
 outcome = N parsers
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Parser model interpolation

 train a separate parser for each source treebank
 delexicalized or after translation into target language

 interpolate trained models into a combined model
 apply parser with combined model to target text
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Parser model interpolation

 motivation: maybe the parser is more sure with 
some edges than other?

 the score assigned to the edge might show that
 MSTParser before running the MST algorithm:

VERB PREP NOUN#root
12.5 3.4 15.7

18.2-3.4

-6.3

2.1 10.2

1.3
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Parser model interpolation

VERB PREP NOUN#root
12.5 3.4 15.7

18.2-3.4

-6.3

2.1 10.2

1.3

VERB PREP NOUN#root
17.4 14.3 9.7

-1.46.1

5.2

10.8 -2.4

2.2

src 2:

src 1:

+

 score normalization by standard deviation
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Parser model interpolation

VERB PREP NOUN#root
29.9 17.7 25.4

16.82.7

-1.1

12.9 7.8

3.5

tgt (∑):=
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Parser model interpolation

VERB PREP NOUN#root
29.9 17.7 25.4

16.82.7

-1.1

12.9 7.8

3.5

tgt:=
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Weighted parser model interpol.

 multiply each edge score with KL
cpos3

-4 (tgt,src)

VERB PREP NOUN#root
17.4 14.3 9.7

-1.46.1

5.2

10.8 -2.4

2.2

src1:

KL
cpos3

-4  (tgt, src1) = 0.5



Rudolf Rosa – Cross-lingual Transfer of Dependency Parsers 58/62

Weighted parser model interpol.

 multiply each edge score with KL
cpos3

-4 (tgt,src)

VERB PREP NOUN#root
8.7 7.1 4.8

-0.73.1

2.6

5.4 -1.2

1.1

src1:

KL
cpos3

-4  (tgt, src1) = 0.5
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Parser model interpolation

 motivation: maybe the parser is more sure with 
some edges than other?

 the score assigned to the edge might show that
 edge score ≠ parser confidence!

 just a very rough estimate
 better methods exist (Mejer+, 2012)

 tree score drop when the edge forbidden
 % of trees with the edge in k-best, weighted
 % of trees with the edge in K sampled models
 …more accurate, but slower and less practical...
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Average UAS over 18 test TBs

upper bound: Oracle src

Weighted interpolation

Unweighted interpolation

Weighted combination

Unweighted combination

Single-source selection

baseline: Treebank concatenation

42% 44% 46% 48% 50% 52% 54% 56%

55.9%

52.8%

45.6%

52.5%

48.0%

48.6%

44.5%

UASselection/weighting
using KL

cpos
3
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Conclusion

 Parsing of low-resourced natural languages
 Delexicalized parsing → unrealistic
 Lexicalization via MT → not straightforward
 Multiple sources available → select or combine
 Future work:

 higher-quality MT (reordering, N:N, 1:N, M:N)
 lexicalized source selection/weighting (no gold POS)
 combine best setups together
 finish thesis :-)
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Thank you for your attention

http://ufal.mff.cuni.cz/rudolf-rosa/

Charles University in Prague
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