Jan St&panek

29th November 2006

run_all from PDT

Located in tools/machine-annotation/run_all.
m Tokenization of the input plain text and segmentation into
sentences.

= Morphological analysis and tagging (morphological
disambiguation).

m Dependency parsing.
m Analytical (dependency) function assignment for all nodes of
the parsed tree.

Limitations and requirements:

m Written in C/C++, perl and tcsh.

m Compiled for Linux on an i386 architecture.

m Problems with full-stop (“.") in Czech.

m Tested on amw data:

m Segmentation:

precision 98.0 %, recall 91.4 %, F-measure 94.6 %.
m Tokenization:

precision 100.0 %, recall 99.2 %, F-measure 99.6 %.

m All possible lemmas and tags.

m Dictionary of 350,000 entries, 12 million Czech word forms.

m Error rate: 2.5 % (foreign names and typos).

m Maximum entropy approach with greedy incorporation of
selectors.

m Tagging — 93.08 % accuracy on evaluation test data.

m Czech adaptation of the parser of Michael Collins —
dependency based.

= Only shorter sentences (up to 60 words).

m Evaluation test data: 81.6 % parents assigned correctly (both
training and test data tagged machinely).

m Decision tree approach (Quinlan’s C5 classifier translated to
perl)
m Uses btred.

m Precision around 92 %.

m All the previous steps use deprecated CST'S format.

m Conversion script uses btred.

Located in tools/morph_chain.

m Hidden Markov models — trained by Viterbi algorithm +
averaged perceptron for evaluating transitions between HMM
states (Collins)

m Trained on PDT: 91.8 % (93.1)

Features (same as those of TrEd):

= Independent on operating system (MS Windows, Linux,
0S X...)

m Open source program, available for free

m Written in perl (macros, predefined functions)
Requirements and installation:

m perl (5.8.3 or newer) with Tk library
E http://ufal.mff.cuni.cz/"pajas/tred/

m For MS Windows: tred_wininst_en.zip — setup.bat
m For Linux: tred-dep-unix.tar.gz — install
tred-current.tar.gz

Dealing with the Structural Annotation
Why btred?

m Object-oriented tree representation — a rich repertory of basic
functions for tree traversing and for many other basic
operations on trees + several highly non-trivial functions
suitable for linguistically motivated traversing of trees (e.g.
solving the coordination relations).

m Reasonable stability because of long-time experience
(development of PDT).

m Network (parallel) version (not for MS Windows).

m Powerful and fast search-engine (pipes).

Basic syntax:
btred -e <code> file(s) OR btred -I macro_file file(s)

$ btred -e ’writeln("Hello world!");’ sampleO.a.gz
BTRED: Trying /export/common/lib/tred
Config file: /home/stepanek/.tredrc
BTRED: Resource path: /home/stepanek/tred/resources/
BTRED: Reading macros from /usr/tred/tred.mac...
BTRED: done.
BTRED: <script>
package TredMacro;
sub _btred_eval_ {

writeln("Hello world!");

}

’

</script>

BTRED: Processing: sampleO.a.gz (1/1)
Hello world!

BTRED: Done.

Traversing trees:
$ btred -QTe ’writeln($a++);’ sampleO.a.gz

52
53

Traversing trees and nodes:

$ btred -QNTe ’writeln($a++);’ sampleO.a.gz
864

865

More files:

$ btred -QNTe ’writeln($a++);’ samplex.a.gz
7813

7814

Simple attributes:
$ btred -QNTe ’writeln($this->{afun})’ sampleO.a.gz

Atr
AuxK

Structured and list attributes
$ btred -QNTe ’writeln($this->attr("m/form"))’ samplel.a.gz

zalozZeni
0OSN

$ btred -QNTe ’my Q@ids = ListV($this->attr("coref_text.rf"));
if (@ids){
writeln(PML_T: :GetNodeByID($ids[0])->{t_lemma}) ;
}’ sample*.t.gz
#PersPron
Chodura

Methods — find the tree with the highest number of nodes (root
descendants):
$ btred -QTe ’writeln(scalar($root->descendants))’
samplex.t.gz | sort -n | tail -ni
42

Similarly: children, parent, lbrother...

perl functions grep and map — print verbs and their objects:
$ btred -QNTe ’if ($this->attr("m/tag") =~ /°V/) {
writeln join " ",
$this->attr("m/form"),
map {$_->attr("m/form")}
grep {$_->{afun} eq "Obj"} $this->children;
}’ samplel.a.gz

Nehodla vyjadrovat
vyjadrovat

dokon¢il Setreni

predal spis zastupitelstvi

Similarly: first

Effective children and parents — what semantical part of speech are the
parents of actors and how often:
$ btred -QNTe °
my $par;
$par = join(" ",
map({
$_->attr("gram/sempos")
} PML_T::GetEParents())
),writeln($par) if $this->{functor} eq "ACT"
’ samplex.t.gz | sort | uniq -c | sort -n
4vvv
5 adj.denot
25
30 v v
108 n.denot
117 n.denot.neg
667 v

Crossing layer boundaries — count all actors expressed by a noun

in nominative (1% case):

$ btred -QNTe ’writeln() if $this->{functor} eq "ACT"
and ! $this->{is_generated}

and first {
my $t = $_->attr("m/tag");
$t =~ /°N...1/

} PML_T::GetANodes($this)
> samplex.t.gz | wc -1
422

TrEd function FPosition():

$ btred -QNTe ’FPosition()
if $this->{t_lemma} =~ /_.*_/’ samplex*.t.gz
sample9.t.gz##14.22

$ btred -I macro-that-uses-FPosition *.t.gz |
tred -1-

Crawling through all the tectogrammatical nodes by btred takes
about 10 minutes. Most time is spent by opening and parsing the
data.

Possible solution: read all the data just once and keep them in the
memory.

Problem: not enough memory.
Solution: distribute the data among several computers.

ntred (network-tred): btred servers + hub

ntred requirements:

m Cannot run on MS Windows (problems with net sockets).

m All the computers running btred-servers must share a
filesystem.

m Password-free access to all the computers is needed.

= Some macros have to be adjusted (e.g. overall statistics).

	Introduction
	run_all
	morph_chain
	btred

