
Prague Treebanking for Everyone

Automatic Processing of Data

Jan Štěpánek

29th November 2006

run all from PDT

Located in tools/machine-annotation/run all.

Tokenization of the input plain text and segmentation into
sentences.

Morphological analysis and tagging (morphological
disambiguation).

Dependency parsing.

Analytical (dependency) function assignment for all nodes of
the parsed tree.

Limitations and requirements:

Written in C/C++, perl and tcsh.

Compiled for Linux on an i386 architecture.

run all from PDT
Tokenization and segmentation

Problems with full-stop (“.”) in Czech.

Tested on amw data:

Segmentation:
precision 98.0 %, recall 91.4 %, F-measure 94.6 %.
Tokenization:
precision 100.0 %, recall 99.2 %, F-measure 99.6 %.

run all from PDT
Morphological analysis

All possible lemmas and tags.

Dictionary of 350,000 entries, 12 million Czech word forms.

Error rate: 2.5 % (foreign names and typos).

run all from PDT
Morphological tagger

Maximum entropy approach with greedy incorporation of
selectors.

Tagging – 93.08 % accuracy on evaluation test data.

run all from PDT
Parsing

Czech adaptation of the parser of Michael Collins —
dependency based.

Only shorter sentences (up to 60 words).

Evaluation test data: 81.6 % parents assigned correctly (both
training and test data tagged machinely).

run all from PDT
Analytical function assignment

Decision tree approach (Quinlan’s C5 classifier translated to
perl)

Uses btred.

Precision around 92 %.

run all from PDT
Conversion to PML

All the previous steps use deprecated CSTS format.

Conversion script uses btred.

morph chain from CAC

Located in tools/morph chain.

Hidden Markov models — trained by Viterbi algorithm +
averaged perceptron for evaluating transitions between HMM
states (Collins)

Trained on PDT: 91.8 % (93.1)

Dealing with the Structural Annotation
btred

Features (same as those of TrEd):

Independent on operating system (MS Windows, Linux,
OS X.. .)

Open source program, available for free

Written in perl (macros, predefined functions)

Requirements and installation:

perl (5.8.3 or newer) with Tk library

http://ufal.mff.cuni.cz/~pajas/tred/

For MS Windows: tred wininst en.zip → setup.bat
For Linux: tred-dep-unix.tar.gz→ install
tred-current.tar.gz

Dealing with the Structural Annotation
Why btred?

Object-oriented tree representation — a rich repertory of basic
functions for tree traversing and for many other basic
operations on trees + several highly non-trivial functions
suitable for linguistically motivated traversing of trees (e.g.
solving the coordination relations).

Reasonable stability because of long-time experience
(development of PDT).

Network (parallel) version (not for MS Windows).

Powerful and fast search-engine (pipes).

Dealing with the Structural Annotation
Simplest examples

Basic syntax:
btred -e <code> file(s) OR btred -I macro file file(s)

$ btred -e ’writeln("Hello world!");’ sample0.a.gz

BTRED: Trying /export/common/lib/tred

Config file: /home/stepanek/.tredrc

BTRED: Resource path: /home/stepanek/tred/resources/

BTRED: Reading macros from /usr/tred/tred.mac...

BTRED: done.

BTRED: <script>

package TredMacro;

sub btred eval {
writeln("Hello world!");

}
;

;

</script>

BTRED: Processing: sample0.a.gz (1/1)

Hello world!

BTRED: Done.

Dealing with the Structural Annotation
Simplest examples (2)

Traversing trees:
$ btred -QTe ’writeln($a++);’ sample0.a.gz

...

52

53

Traversing trees and nodes:
$ btred -QNTe ’writeln($a++);’ sample0.a.gz

...

864

865

More files:
$ btred -QNTe ’writeln($a++);’ sample*.a.gz

...

7813

7814

Dealing with the Structural Annotation
Simple examples

Simple attributes:
$ btred -QNTe ’writeln($this->{afun})’ sample0.a.gz
...

Atr

AuxK

Structured and list attributes
$ btred -QNTe ’writeln($this->attr("m/form"))’ sample0.a.gz

...

založení

OSN

.

$ btred -QNTe ’my @ids = ListV($this->attr("coref text.rf"));

if (@ids){
writeln(PML T::GetNodeByID($ids[0])->{t lemma});

}’ sample*.t.gz
...

#PersPron

Chodura

Dealing with the Structural Annotation
Examples

Methods — find the tree with the highest number of nodes (root
descendants):
$ btred -QTe ’writeln(scalar($root->descendants))’

sample*.t.gz | sort -n | tail -n1

42

Similarly: children, parent, lbrother. . .

Dealing with the Structural Annotation
Examples (2)

perl functions grep and map — print verbs and their objects:
$ btred -QNTe ’if($this->attr("m/tag") =~ /^V/) {
writeln join " ",

$this->attr("m/form"),

map {$ ->attr("m/form")}
grep {$ ->{afun} eq "Obj"} $this->children;

}’ sample1.a.gz
...

Nehodlá vyjadřovat

vyjadřovat

dokončil šetření

předal spis zastupitelství

Similarly: first

Dealing with the Structural Annotation
Complex examples

Effective children and parents — what semantical part of speech are the
parents of actors and how often:
$ btred -QNTe ’

my $par;

$par = join(" ",

map({
$ ->attr("gram/sempos")

} PML T::GetEParents())
),writeln($par) if $this->{functor} eq "ACT"

’ sample*.t.gz | sort | uniq -c | sort -n

...

4 v v v

5 adj.denot

25

30 v v

108 n.denot

117 n.denot.neg

667 v

Dealing with the Structural Annotation
Complex examples (2)

Crossing layer boundaries — count all actors expressed by a noun
in nominative (1st case):
$ btred -QNTe ’writeln() if $this->{functor} eq "ACT"
and ! $this->{is generated}
and first {
my $t = $ ->attr("m/tag");

$t =~ /^N...1/

} PML T::GetANodes($this)
’ sample*.t.gz | wc -l

422

Dealing with the Structural Annotation
Searching and viewing results

TrEd function FPosition():
$ btred -QNTe ’FPosition()

if $this->{t lemma} =~ / .* /’ sample*.t.gz
sample9.t.gz##14.22

$ btred -I macro-that-uses-FPosition *.t.gz |

tred -l-

Dealing with the Structural Annotation
Speeding up

Crawling through all the tectogrammatical nodes by btred takes
about 10 minutes. Most time is spent by opening and parsing the
data.

Possible solution: read all the data just once and keep them in the
memory.

Problem: not enough memory.

Solution: distribute the data among several computers.

ntred (network-tred): btred servers + hub

Dealing with the Structural Annotation
Speeding up (2)

ntred requirements:

Cannot run on MS Windows (problems with net sockets).

All the computers running btred-servers must share a
filesystem.

Password-free access to all the computers is needed.

Some macros have to be adjusted (e.g. overall statistics).

	Introduction
	run_all
	morph_chain
	btred

