Outline

- Linguistic Theories of semantic representation
 - □ Case Frames Fillmore FrameNet
 - □ Lexical Conceptual Structure Jackendoff LCS
 - □ Proto-Roles *Dowty* PropBank
 - English verb classes (diathesis alternations) Levin VerbNet
- Manual Semantic Annotation
- Automatic Semantic annotation
- Parallel PropBanks and Event Relations

Thematic Proto-Roles and Argument Selection, David Dowty,

Language 67: 547-619, 1991

Thanks to Michael Mulyar

Context: Thematic Roles

- Thematic relations (Gruber 1965, Jackendoff 1972)
- Traditional thematic roles types include:
 Agent, Patient, Goal, Source, Theme, Experiencer, Instrument (p. 548).
- "Argument-Indexing View": thematic roles objects at syntaxsemantics interface, determining a syntactic derivation or the linking relations.
- Θ-Criterion (GB Theory): each NP of predicate in lexicon assigned unique θ-role (Chomsky 1981).

Problems with Thematic Role Types

- Thematic role types used in many syntactic generalizations, e.g. involving empirical thematic role hierarchies. Are thematic roles syntactic universals (or e.g. constructionally defined)?
- Relevance of role types to syntactic description needs motivation, e.g. in describing transitivity.
- Thematic roles lack independent semantic motivation.
- Apparent counter-examples to θ-criterion (Jackendoff 1987).
- Encoding semantic features (Cruse 1973) may not be relevant to syntax.

Problems with Thematic Role Types

- Fragmentation: Cruse (1973) subdivides
 Agent into four types.
- Ambiguity: Andrews (1985) is Extent, an adjunct or a core argument?
- Symmetric stative predicates: e.g. "This is similar to that" Distinct roles or not?
- Searching for a Generalization: What is a Thematic Role?

Proto-Roles

- Event-dependent Proto-roles introduced
- Prototypes based on shared entailments
- Grammatical relations such as subject related to observed (empirical) classification of participants
- Typology of grammatical relations
- Proto-Agent
- Proto-Patient

Proto-Agent

Properties

- Volitional involvement in event or state
- Sentience (and/or perception)
- Causing an event or change of state in another participant
- Movement (relative to position of another participant)
- (exists independently of event named)*may be discourse pragmatic

Proto-Patient

Properties:

- Undergoes change of state
- Incremental theme
- Causally affected by another participant
- Stationary relative to movement of another participant
- does not exist independently of the event, or at all) *may be discourse pragmatic

Argument Selection Principle

- For 2 or 3 place predicates
- Based on empirical count (total of entailments for each role).
- Greatest number of Proto-Agent entailments → Subject; greatest number of Proto-Patient entailments → Direct Object.
- Alternation predicted if number of entailments for each role similar (nondiscreteness).

Worked Example: Psychological Predicates

Examples:

Experiencer Subject Stimulus Subject

x likes y y pleases x

x fears y y frightens x

Describes "almost the same" relation

Experiencer: sentient (P-Agent)

Stimulus: causes emotional reaction (P-Agent)

Number of proto-entailments same; but for stimulus subject verbs, experiencer also undergoes change of state (P-Patient) and is therefore lexicalized as the patient.

Symmetric Stative Predicates

Examples:

This one and that one rhyme / intersect / are similar.
This rhymes with / intersects with / is similar to that.

(cf. The drunk embraced the lamppost. / *The drunk and the lamppost embraced.)

Symmetric Predicates: Generalizing via Proto-Roles

- Conjoined predicate subject has Proto-Agent entailments which two-place predicate relation lacks (i.e. for object of two-place predicate).
- Generalization entirely reducible to protoroles.
- Strong cognitive evidence for proto-roles: would be difficult to deduce lexically, but easy via knowledge of proto-roles.

Diathesis Alternations

Alternations:

- Spray / Load
- Hit / Break

Non-alternating:

- Swat / Dash
- Fill / Cover

Spray / Load Alternation

Example:

Mary loaded the hay onto the truck. Mary loaded the truck with hay.

Mary sprayed the paint onto the wall. Mary sprayed the wall with paint.

- Analyzed via proto-roles, not e.g. as a theme / location alternation.
- Direct object analyzed as an Incremental Theme, i.e. either of two non-subject arguments qualifies as incremental theme. This accounts for alternating behavior.

Hit / Break Alternation

John hit the fence with a stick.

John hit the stick against a fence.

John broke the fence with a stick.

John broke the stick against the fence.

- Radical change in meaning associated with break but not hit.
- Explained via proto-roles (change of state for direct object with break class).

Swat doesn't alternate...

swat the boy with a stick *swat the stick at / against the boy

Fill / Cover

Fill / Cover are non-alternating:

Bill filled the tank (with water).

*Bill filled water (into the tank).

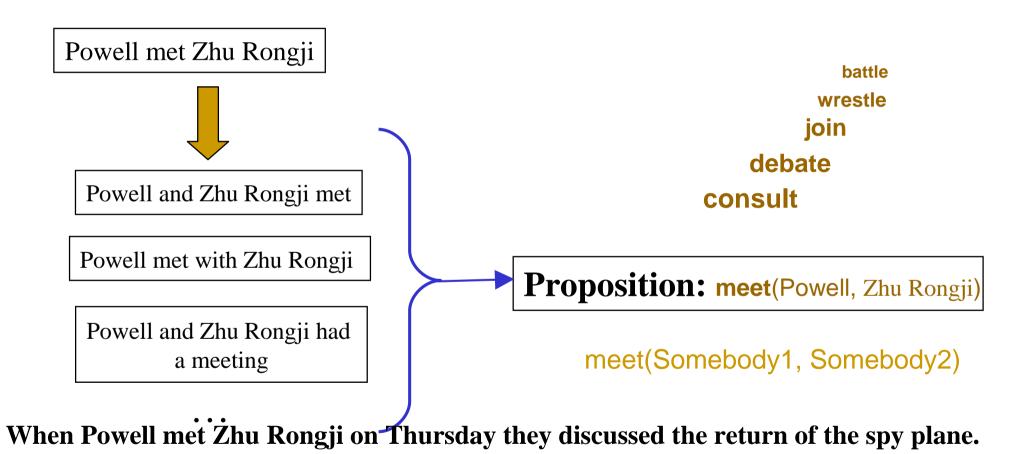
Bill covered the ground (with a tarpaulin). *Bill covered a tarpaulin (over the ground).

Only goal lexicalizes as incremental theme (direct object).

Conclusion

- Dowty argues for Proto-Roles based on linguistic and cognitive observations.
- Objections: Are P-roles empirical (extending arguments about hit class)?

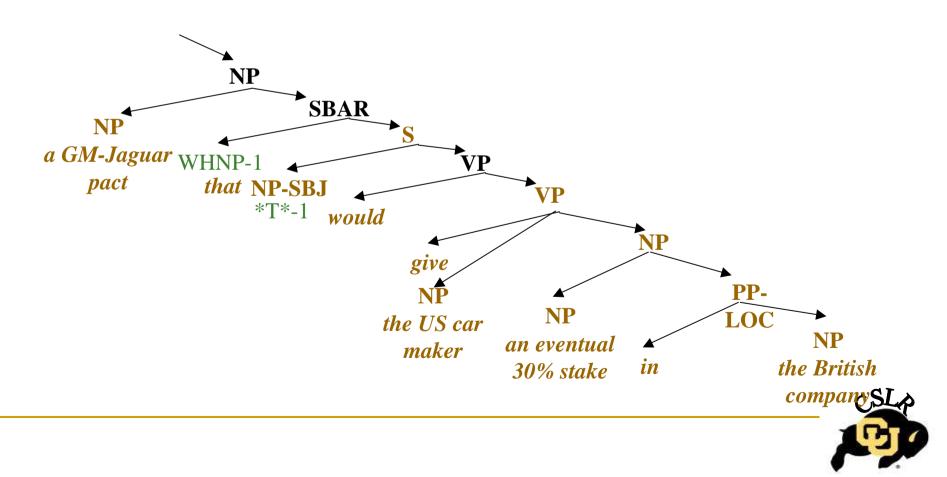
Proposition Bank: From Sentences to Propositions



meet(Powell, Zhu) discuss([Powell, Zhu], return(X, plane))

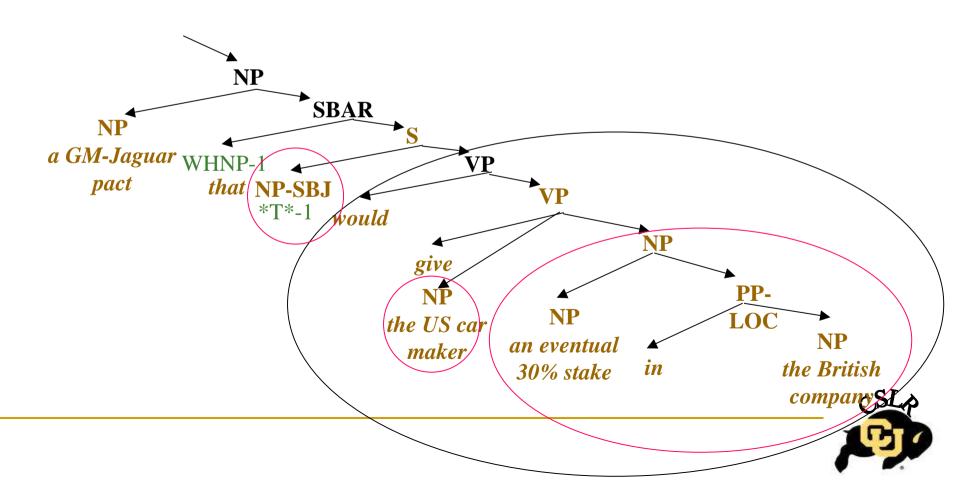
A TreeBanked phrase

a GM-Jaguar pact that would give the U.S. car maker an eventual 30% stake in the British company.



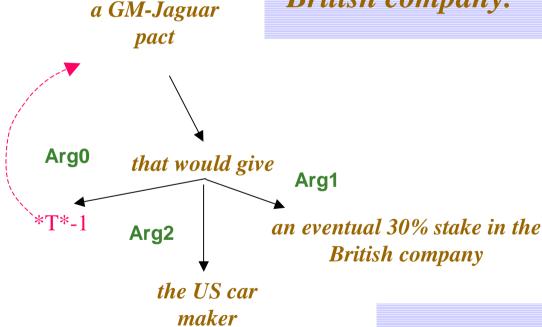
A TreeBanked phrase

a GM-Jaguar pact that would give the U.S. car maker an eventual 30% stake in the British company.



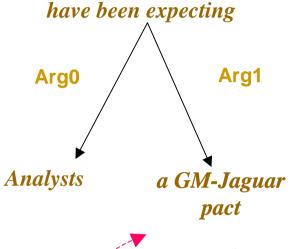
The same phrase, PropBanked

a GM-Jaguar pact that would give the U.S. car maker an eventual 30% stake in the British company.

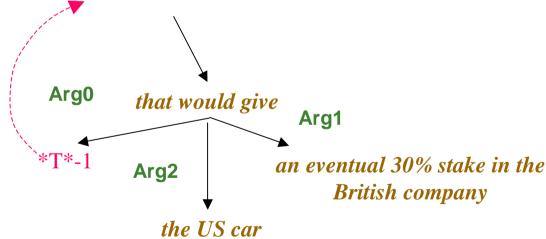


give(GM-J pact, US car maker, 30% stake)

The full sentence, PropBanked



Analysts have been expecting a GM-Jaguar pact that would give the U.S. car maker an eventual 30% stake in the British company.



maker

expect(Analysts, GM-J pact)
give(GM-J pact, US car maker, 30% stake)

Frames File Example: expect

Roles:

Arg0: expecter

Arg1: thing expected

Example: Transitive, active:

Portfolio managers expect further declines in interest rates.

Arg0: Portfolio managers

REL: expect

Arg1: further declines in interest rates

Frames File example: give

Roles:

Arg0: giver

Arg1: thing given

Arg2: entity given to

Example: double object

The executives gave the chefs a standing ovation.

Arg0: The executives

REL: gave

Arg2: the chefs

Arg1: a standing ovation

Word Senses in PropBank

- Orders to ignore word sense not feasible for 700+ verbs
 - Mary left the room
 - Mary left her daughter-in-law her pearls in her will

Frameset leave.01 "move away from":

Arg0: entity leaving

Arg1: place left

Frameset leave.02 "give":

Arg0: giver

Arg1: thing given

Arg2: beneficiary

How do these relate to traditional word senses in VerbNet and WordNet?

Annotation procedure

- PTB II Extraction of all sentences with given verb
- Create Frame File for that verb Paul Kingsbury
 - (3100+ lemmas, 4400 framesets, 118K predicates)
 - Over 300 created automatically via VerbNet
- First pass: Automatic tagging (Joseph Rosenzweig)
 - □ http://www.cis.upenn.edu/~josephr/TIDES/index.html#lexicon
- Second pass: Double blind hand correction

Paul Kingsbury

- Tagging tool highlights discrepancies Scott Cotton
- Third pass: Solomonization (adjudication)
 - Betsy Klipple, Olga Babko-Malaya

Semantic role labels:

Jan broke the LCD projector.

```
break (agent(Jan), patient(LCD-projector))
```

Filmore, 68

cause(agent(Jan),

change-of-state(LCD-projector))

(broken(LCD-projector))

Jackendoff, 72

Dowty, 91

patient(P) -> affected(P), change(P),...

Trends in Argument Numbering

- Arg0 = agent
- Arg1 = direct object / theme / patient
- Arg2 = indirect object / benefactive / instrument / attribute / end state
- Arg3 = start point / benefactive / instrument / attribute
- Arg4 = end point
- Per word vs frame level more general?

Additional tags

(arguments or adjuncts?)

- Variety of ArgM's (Arg#>4):
 - TMP when?
 - LOC where at?
 - DIR where to?
 - MNR how?
 - PRP -why?
 - REC himself, themselves, each other
 - PRD -this argument refers to or modifies another
 - ADV –others

Inflection

- Verbs also marked for tense/aspect
 - Passive/Active
 - Perfect/Progressive
 - Third singular (is has does was)
 - Present/Past/Future
 - Infinitives/Participles/Gerunds/Finites
- Modals and negations marked as ArgMs

Frames: Multiple Framesets

- Framesets are not necessarily consistent between different senses of the same verb
- Framesets are consistent between different verbs that share similar argument structures, (like FrameNet)
- Out of the 787 most frequent verbs:
 - □ 1 FrameNet 521
 - □ 2 FrameNet 169
 - 3+ FrameNet 97 (includes light verbs)

Ergative/Unaccusative Verbs

Roles (no ARG0 for unaccusative verbs)

Arg1 = Logical subject, patient, thing rising

Arg2 = EXT, amount risen

 $Arg3^* = start point$

Arg4 = end point

Sales rose 4% to \$3.28 billion from \$3.16 billion.

The Nasdaq composite index added 1.01 to 456.6 on paltry volume.

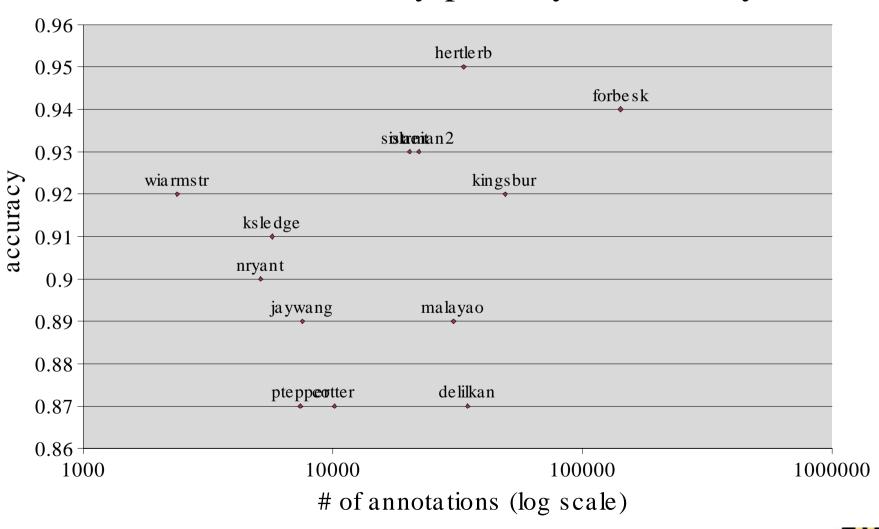
PropBank/FrameNet

Buy Sell Arg0: buyer Arg0: seller Arg1: goods Arg1: goods Arg2: seller Arg2: buyer Arg3: rate Arg3: rate Arg4: payment Arg4: payment

More generic, more neutral – maps readily to VN,

Annotator accuracy – ITA 84%

Annotator Accuracy-primary labels only



Limitations to PropBank

- Args2-4 seriously overloaded, poor performance
 - VerbNet and FrameNet both provide more finegrained role labels
- WSJ too domain specific, too financial, need broader coverage genres for more general annotation
 - Additional Brown corpus annotation, also GALE data
 - FrameNet has selected instances from BNC

Levin – English Verb Classes and Alternations: A Preliminary Investigation, 1993.

Levin classes (Levin, 1993)

- 3100 verbs, 47 top level classes, 193 second and third level
- Each class has a syntactic signature based on alternations.
 John broke the jar. / The jar broke. / Jars break easily.

John cut the bread. / *The bread cut. / Bread cuts easily.

John hit the wall. / *The wall hit. / *Walls hit easily.

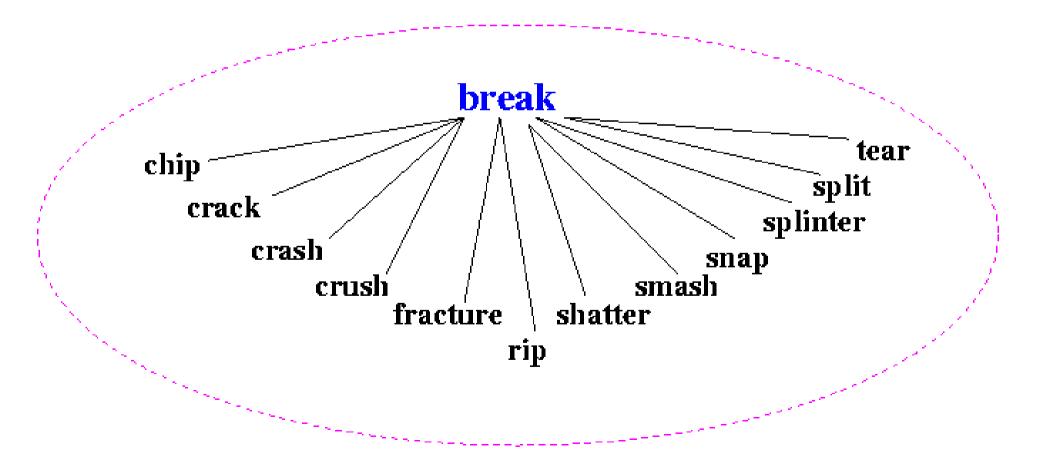
Levin classes (Levin, 1993)

- Verb class hierarchy: 3100 verbs, 47 top level classes, 193
- Each class has a syntactic signature based on alternations.
 John broke the jar. / The jar broke. / Jars break easily.
 change-of-state

John cut the bread. / *The bread cut. / Bread cuts easily. change-of-state, recognizable action, sharp instrument

John hit the wall. / *The wall hit. / *Walls hit easily. contact, exertion of force

Break Levin class - Change-of-state



Limitations to Levin Classes

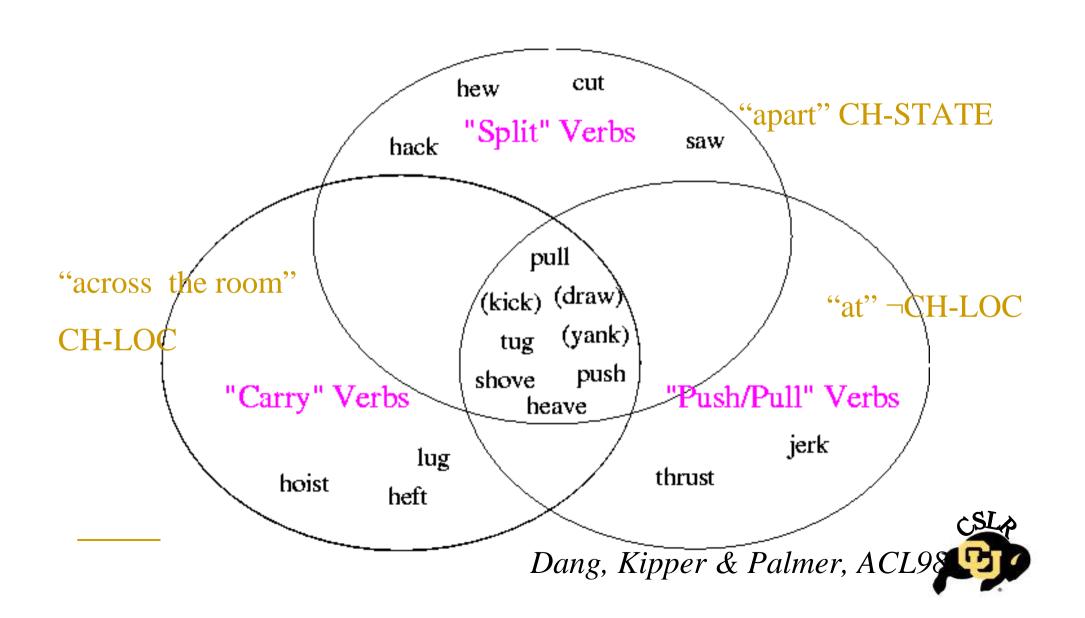
Dang, Kipper & Palmer, ACL98

- Coverage of only half of the verbs (types) in the Penn Treebank (1M words,WSJ)
- Usually only one or two basic senses are covered for each verb
- Confusing sets of alternations
 - Different classes have almost identical "syntactic signatures"
 - or worse, contradictory signatures

Multiple class listings

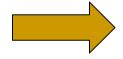
- Homonymy or polysemy?
 - draw a picture, draw water from the well
- Conflicting alternations?
 - Carry verbs disallow the Conative,
 (*she carried at the ball), but include
 {push,pull,shove,kick,yank,tug}
 - also in Push/pull class, does take the Conative (she kicked at the ball)

Intersective Levin Classes



Intersective Levin Classes

- More syntactically and semantically coherent
 - sets of syntactic patterns
 - explicit semantic components
 - relations between senses



VERBNET

verbs.colorado.edu/~mpalmer/ verbnet

VerbNet – Karin Kipper

Class entries:

- Capture generalizations about verb behavior
- Organized hierarchically
- Members have common semantic elements, semantic roles and syntactic frames

Verb entries:

- Refer to a set of classes (different senses)
- each class member linked to WN synset(s) (not all WN senses are covered)

Hand built resources vs. Real data

VerbNet is based on linguistic theory – how useful is it?

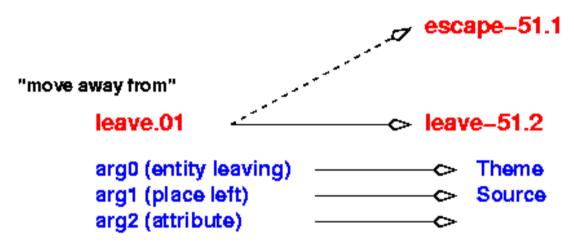
How well does it correspond to syntactic variations found in naturally occurring text?

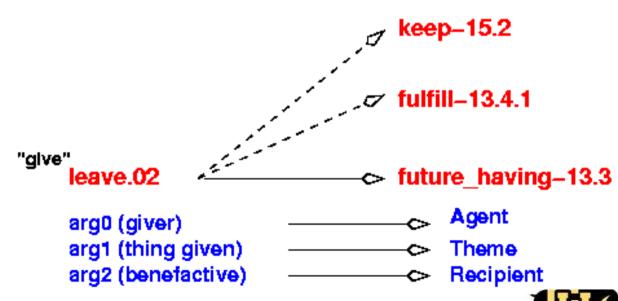
PropBank

Mapping from PropBank to VerbNet

Frameset id = leave.02	Sense = give	VerbNet class = future-having 13.3
Arg0	Giver	Agent
Arg1	Thing given	Theme
Arg2	Benefactive	Recipient

Mapping from PB to VerbNet





Mapping from PropBank to VerbNet

- Overlap with PropBank framesets
 - 50,000 PropBank instances
 - □ < 50% VN entries, > 85% VN classes
- Results
 - MATCH 78.63%. (80.90% relaxed)
 - (VerbNet isn't just linguistic theory!)
- Benefits
 - Thematic role labels and semantic predicates
 - Can extend PropBank coverage with VerbNet classes
 - WordNet sense tags

Mapping PropBank/VerbNet

- Extended VerbNet now covers 80% of PropBank tokens. Kipper, et. al., LREC-04, LREC-06 (added Korhonen and Briscoe classes)
- Semi-automatic mapping of PropBank instances to VerbNet classes and thematic roles, hand-corrected. (final cleanup stage)
- VerbNet class tagging as automatic WSD
- Run SRL, map Args to VerbNet roles

Can SemLink improve Generalization?

- Overloaded Arg2-Arg5
 - □ PB: verb-by-verb
 - VerbNet: same thematic roles across verbs
- Example
 - Rudolph Agnew,..., was named [ARG2 {Predicate} a nonexecutive director of this British industrial conglomerate.]
 -the latest results appear in today's New England Journal of Medicine, a forum likely to bring new attention [ARG2 {Destination} to the problem.]
- Use VerbNet as a bridge to merge PB and FN and expand the Size and Variety of the Training

Automatic Labelling of Semantic Relations – Gold Standard, 77%

- Given a constituent to be labelled
- Stochastic Model
- Features:
 - □ Predicate, (verb)
 - □ Phrase Type, (NP or S-BAR)
 - Parse Tree Path
 - Position (Before/after predicate)
 - Voice (active/passive)
 - Head Word of constituent

Additional Automatic Role Labelers

- Performance improved from 77% to 88%
 Automatic parses, 81% F, Brown corpus, 68%
 - Same features plus
 - Named Entity tags
 - Head word POS
 - For unseen verbs backoff to automatic verb clusters
 - SVM's
 - Role or not role
 - For each likely role, for each Arg#, Arg# or not
 - No overlapping role labels allowed

Pradhan, et. al., ICDM03, Sardeneau, et. al, ACL03, Chen & Rambow, EMNLP03, Gildea & Hockemaier, EMNLP03, Yi & Palmer, ICON04 CONLL-04, 05 Shared Task

Arg1 groupings; (Total count 59710)

Group1	Group2	Group3	Group4	Group5
(53.11%)	(23.04%)	(16%)	(4.67%)	(.20%)
Theme; Theme1; Theme2; Predicate; Stimulus; Attribute	Topic	Patient; Product; Patient1; Patient2	Agent; Actor2; Cause; Experiencer	Asset

Arg2 groupings; (Total count 11068)

Group1 (43.93%)	Group2	Group3	Group4	Group5
	(14.74%)	(32.13%)	(6.81%)	(2.39%)
Recipient; Destination; Location; Source; Material; Beneficiary	Extent; Asset	Predicate; Attribute; Theme; Theme2; Theme1; Topic	Patient2; Product	Instrument; Actor2; Cause; Experiencer

Process

- Retrain the SRL tagger
 - Original:
 - Arg[0-5,A,M]
 - ARG1 Grouping: (similar for Arg2)
 - Arg[0,2-5,A,M] Arg1-Group[1-6]
- Evaluation on both WSJ and Brown
- More Coarse-grained or Fine-grained?
 - more specific: data more coherent, but more sparse
 - more general: consistency across verbs even for new domains?

SRL Performance (WSJ/BROWN)

Loper, Yi, Palmer, SIGSEM07

System	Precision	Recall	F-1
Arg1-Original	89.24	77.32	82.85
Arg1-Mapped	90.00	76.35	82.61
Arg2-Original	73.04	57.44	64.31
Arg2-Mapped	84.11	60.55	70.41
Arg1-Original	86.01	71.46	78.07
Arg1-Mapped	88.24	71.15	78.78
Arg2-Original	66.74	52.22	58.59
Arg2-Mapped	81.45	58.45	68.06

